Stéphanie Plenchette

Learn More
DNA damage, chromosomal abnormalities, oncogene activation, viral infection, substrate detachment and hypoxia can all trigger apoptosis in normal cells. However, cancer cells acquire mutations that allow them to survive these threats that are part and parcel of the transformation process or that may affect the growth and dissemination of the tumor.(More)
The cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2) proteins have been implicated in the activation of NF-kappaB by TNFalpha; however, genetic deletion of either cIAP1 or 2 did not support a physiologically relevant role, perhaps because of functional redundancy. To address this, we used combined genetic and siRNA knockdown approaches and report(More)
Caspases are cysteine proteases involved in apoptosis and cytokine maturation. In erythroblasts, keratinocytes, and lens epithelial cells undergoing differentiation, enucleation has been regarded as a caspase-mediated incomplete apoptotic process. Here, we show that several caspases are activated in human peripheral blood monocytes whose differentiation(More)
HSP27 is an ATP-independent chaperone that confers protection against apoptosis through various mechanisms, including a direct interaction with cytochrome c. Here we show that HSP27 overexpression in various cell types enhances the degradation of ubiquitinated proteins by the 26S proteasome in response to stressful stimuli, such as etoposide or tumor(More)
The caspase inhibitor and RING finger-containing protein cellular inhibitor of apoptosis protein 1 (c-IAP1) has been shown to be involved in both apoptosis inhibition and signaling by members of the tumor necrosis factor (TNF) receptor family. The protein is regulated transcriptionally (eg, is a target for nuclear factor-kappaB [NF-kappaB]) and can be(More)
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a putative tumor suppressor in which expression is significantly reduced in human cancer cell lines and primary tumors. The proapoptotic effects of XAF1 have been attributed to both caspase-dependent and -independent means. In particular, XAF1 reverses the anti-caspase activity of XIAP, a(More)
Exposure of U937 human leukemic cells to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces their differentiation into monocyte/macrophage-like cells. This terminal differentiation is associated with a resistant phenotype to apoptosis induced by the topoisomerase II inhibitor etoposide. The inhibition occurs upstream of the mitochondrial(More)
XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter(More)
Proteins of the Bcl-2 family share one or several Bcl-2 homology (BH) regions and behave as pro- or anti-apoptotic proteins. Prosurvival members such as Bcl-2 and Bcl-X(L) are supposed to preserve mitochondrial outer membrane integrity, thus preventing the release of soluble apoptogenic molecules. Pro-apoptotic members include BH3-only proteins that act as(More)
The Inhibitor of Apoptosis proteins (IAPs) are key repressors of apoptosis. Several IAP proteins contain a RING domain that functions as an E3 ubiquitin ligase involved in the ubiquitin-proteasome pathway. Here we investigated the interplay of ubiquitin-proteasome pathway and RING-mediated IAP turnover. We found that the CARD-RING domain of cIAP1 (cIAP1-CR)(More)