Stéphanie Perreau-Lenz

Learn More
Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits(More)
The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral(More)
A key deficit in alcohol dependence is disrupted prefrontal function leading to excessive alcohol seeking, but the molecular events underlying the emergence of addictive responses remain unknown. Here we show by convergent transcriptome analysis that the pyramidal neurons of the infralimbic cortex are particularly vulnerable for the long-term effects of(More)
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the(More)
Our study aimed to identify new candidate genes, which might be involved in alcohol craving and relapse. To find changes in gene expression after long-term alcohol consumption, we studied gene expression profiles in the striatal dopamine system by using DNA microarrays of two different alcohol-preferring rat lines (HAD and P). Our data revealed an(More)
Daily fluctuations of the behavioral and pharmacological effects of drugs of abuse such as cocaine, morphine or alcohol are observed for several years. Since the discovery of the molecular components of the biological clock, the so-called "clock genes", several studies have further confirmed the inter-relationship between drugs of abuse and biological(More)
OBJECTIVE Circadian and stress-response systems mediate environmental changes that affect alcohol drinking. Psychosocial stress is an environmental risk factor for alcohol abuse. Circadian rhythm gene period 1 (Per1) is targeted by stress hormones and is transcriptionally activated in corticotropin releasing factor-expressing cells. The authors hypothesized(More)
The alpha-subunits of the trimeric Go class of GTPases, comprising the splice variants Go1alpha and Go2alpha, are abundantly expressed in brain and reside on both plasma membrane and synaptic vesicles. Go2alpha is involved in the vesicular storage of monoamines but its physiological relevance is still obscure. We now show that genetic depletion of Go2alpha(More)
The association of single-nucleotide polymorphisms (SNPs) in the human tryptophan hydroxylase 2 (TPH2) gene with anxiety traits and depression has been inconclusive. Observed inconsistencies might result from the fact that TPH2 polymorphisms have been studied in a genetically heterogeneous human population. A defined genetic background, control over(More)
A major hypothesis in addiction research is that alcohol induces neuroadaptations in the mesolimbic dopamine (DA) system and that these neuroadaptations represent a key neurochemical event in compulsive drug use and relapse. Whether these neuroadaptations lead to a hypo- or hyperdopaminergic state during abstinence is a long-standing, unresolved debate(More)