Learn More
Hypertensive heart disease (HHD) occurs in patients that clinically have both diastolic and systolic heart failure and will soon become the most common cause of heart failure. Two key aspects of heart failure secondary to HHD are the relatively highly prevalent LV hypertrophy and cardiac fibrosis, caused by changes in the local and systemic neurohormonal(More)
Vascular cells are very sensitive to their hemodynamic environment. Any change in blood pressure or blood flow can be sensed by endothelial and vascular smooth muscle cells and ultimately results in structural modifications within the vascular wall that accommodate the new conditions. In the case of hypertension, the increase in arterial stretch stimulates(More)
BACKGROUND High blood pressure causes a change in vascular wall structure involving altered extracellular matrix composition, but how this process occurs is not fully understood. METHODS AND RESULTS Using mouse carotid arteries maintained in organ culture for 3 days, we detected increased gelatin zymographic activity of matrix metalloproteinase (MMP)-2(More)
Increased steady intraluminal pressure in blood vessels activates the extracellular signal-regulated kinase (ERK)1/2 pathway. However, signal transduction of pulsatile stretch has not been elucidated. Using an organ culture model of rabbit aorta, we studied ERK1/2 activation by pulsatility in vessels maintained at 80 mm Hg for 24 hours. ERK1/2 activity was(More)
Hypertension is a known risk factor for the development of atherosclerosis. To assess how mechanical factors contribute to this process, mouse carotid arteries were maintained in organ culture at normal (80 mm Hg) or high (150 mm Hg) intraluminal pressure for 1, 6, 12, or 24 hours. Thereafter, fluorescent human monocytic cells (U937) were injected(More)
Arteriovenous fistulas (AVFs) are usually used for vascular access in the provision of hemodialysis, but AVFs have a 1-year patency rate of only about 60% owing to stenosis. As the molecular mechanisms behind AVF neointimal hyperplasia remain largely unknown, representative models in transgenic mice could be useful to study this process at the genetic(More)
Na(+)/H(+) exchanger isoform-1 (NHE1), the ubiquitous form of the Na(+)/H(+) exchanger, has increased activity in hypertensive patients and in animal models of hypertension. Furthermore, NHE1 is activated in cells stimulated with growth factors. We showed previously that activation of the exchanger is dependent on phosphorylation of serine 703 (Ser(P)(703))(More)
BACKGROUND Macrophages are present before the onset of blood flow, but very little is known about their function in vascular development. We have developed a technique to concurrently label both endothelial cells and macrophages for time-lapse microscopy using co-injection of fluorescently conjugated acetylated low-density lipoprotein (AcLDL) and phagocytic(More)
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow, and shear stress. Alterations in stretch or shear stress invariably produce transformations in the vessel wall that will aim to accommodate the new conditions and to ultimately restore basal(More)
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow and shear stress. Significant variations in mechanical forces, of physiological or physiopathological nature, occur in vivo. These are accompanied by phenotypical modulation of smooth muscle(More)