Learn More
Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of(More)
The hippocampus plays a central role in various forms of complex learning and memory. Opioid peptides and receptors are abundant in the hippocampus. These peptides are co-released with glutamate from mossy fiber- and lateral perforant path-synapses. In this study, we evaluated the functional relevance of the CA3 Kappa opioid receptors (KOR) by transient(More)
Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting as an(More)
Elucidating the functional properties of the dentate gyrus (DG), CA3, and CA1 areas is critical for understanding the role of the dorsal hippocampus in contextual fear memory processing. In order to specifically disrupt various hippocampal inputs, we used region-specific infusions of DCG-IV, the metabotropic glutamate receptor agonist, which selectively(More)
Lesion studies have demonstrated the prominent role of the hippocampus in spatial and contextual learning. To better understand how contextual information is processed in the CA3 region during learning, we focused on the CA3 autoassociative network hypothesis. We took advantage of a particularity of the mossy fibre (MF) synapses, i.e. their high zinc(More)
Vesicular Glutamate Transporters (VGLUTs) allow the loading of presynapic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. VGLUTs have proved to be involved in several major neuropathologies and directly correlated to clinical dementia in Alzheimer and Parkinson's disease. Accordingly VGLUT represent a key biological(More)
We investigated the specific role of zinc present in large amounts in the synaptic vesicles of mossy fibers and coreleased with glutamate in the CA3 region. In previous studies, we have shown that blockade of zinc after release has no effect on the consolidation of spatial learning, while zinc is required for the consolidation of contextual fear(More)
Animal models of genetic diseases obtained by transferring human mutated genes in the mouse are widely used in biomedical based research. They constitute efficient tools to study mechanisms underlying abnormal phenotypes. Unfortunately, the phenotype of the transgene is often obscured by the genetic background of the embryonic stem cells and that of the(More)
One peculiarity of the hippocampal CA3 mossy fiber terminals is the co-release of zinc and glutamate upon synaptic transmission. How these two players act on hippocampal-dependent memories is still unclear. To decipher their respective involvement in memory consolidation, a pharmacological approach was chosen. Using two hippocampal-dependent behavioral(More)
Tonically active cholinergic interneurons (TANs) from the nucleus accumbens (NAc) are centrally involved in reward behavior. TANs express a vesicular glutamate transporter referred to as VGLUT3 and thus use both acetylcholine and glutamate as neurotransmitters. The respective roles of each transmitter in the regulation of reward and addiction are still(More)