Stéphane V. Sizonenko

Yohan van de Looij10
Alexandra Chatagner4
10Yohan van de Looij
4Alexandra Chatagner
Learn More
Neurogenesis is nearly completed after birth, whereas gliogenic activities remain intense during the postnatal period in the developing rat cortex. These include involution of radial glia, proliferation of astrocytes and oligodendrocytes and myelin formation. Little is known about the effects of hypoxic-ischemic (HI) injury on these critical postnatal(More)
The present study evaluated the potential of using the phase of T2* weighted MR images to characterize myelination during brain development and pathology in rodents at 9.4 T. Phase contrast correlated with myelin content assessed by histology and suggests that most contrast between white and cortical gray matter is modulated by myelin. Ex vivo experiments(More)
Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been(More)
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We(More)
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described(More)
BACKGROUND In gyrencephalic species such as sheep, precise anatomical and microstructural characterization of the consequences of fetal inflammation remains scarce. The goal of this study was to characterize changes in white matter (WM) structure using advanced magnetic resonance imaging (MRI) following lipopolysaccharide (LPS) exposure in the(More)
Extremely preterm infants commonly show brain injury with long-term structural and functional consequences. Three-day-old (P3) rat pups share some similarities in terms of cerebral development with the very preterm infant (born at 24-28 weeks of gestation). The aim of this study was to assess longitudinally the cerebral structural and metabolic changes(More)
Neonatal hypoxia-ischemia (HI) is the most important cause of brain injury in the newborn. Here we studied structural alterations and functional perturbations of developing large-scale sensorimotor cortical networks in a rat model of moderate HI at postnatal day 3 (P3). At the morphological level, HI led to a disorganized barrel pattern in the somatosensory(More)
Neuroprotective strategies can prevent lesions from getting worse but agents that have neurotrophic properties can also affect repair in a developing brain. Although prevention and treatment in the early stages of brain lesions are desirable, delayed cell death or improved post-lesion plasticity are the only realistic targets in many cases. Several trophic(More)
PURPOSE OF REVIEW In order to understand the pathophysiological mechanisms leading to the specific brain alterations observed in immature newborn babies, preclinical studies on animal models mimicking clinical reality are mandatory and are ideally coupled with imaging modalities transferable to the human scenario. The availability of MRI techniques on both(More)