Learn More
In the developing human brain, the cortical sulci formation is a complex process starting from 14 weeks of gestation onward. The potential influence of underlying mechanisms (genetic, epigenetic, mechanical or environmental) is still poorly understood, because reliable quantification in vivo of the early folding is lacking. In this study, we investigate the(More)
In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long(More)
Distinctive cerebral lesions with disruptions to the developing white matter are found in very low birth weight (VLBW) infants. Although hypoxia-ischemia (HI) is a causal pathway, the pathogenesis of cerebral white matter injury in the VLBW infant is not fully understood. Pertinent murine models would facilitate the investigation of the processes leading to(More)
During brain development, morphological changes modify the cortex from its immature radial organization to its mature laminar appearance. Applying in vivo diffusion tensor imaging (DTI), the microstructural organization of the cortex in the immature rat was analyzed and correlated to neurohistopathology. Significant differences in apparent diffusion(More)
Despite medical advice, 20-30% of female smokers continue to smoke during pregnancy. Epidemiological studies have associated maternal smoking with increased risk of obesity and type-2 diabetes in the offspring. In the present study, we investigated the impact of prenatal nicotine exposure (3 mg/kg in Sprague Dawley rats via osmotic Alzet minipumps) on the(More)
Insulin growth factor 1 (IGF-1) has an important role in brain development and is strongly expressed during recovery after a hypoxic-ischemic injury. Some of its central actions could be mediated through the N-terminal tripeptide fragment of IGF-1: Gly-Pro-Glu (GPE). The neuroprotective properties of GPE given after a moderate injury in the developing rat(More)
* Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neuro-chemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T 1. To minimize effects of(More)
BACKGROUND Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance(More)
OBJECTIVE Perinatal inflammation is a major risk factor for neurological deficits in preterm infants. Several experimental studies have shown that systemic inflammation can alter the programming of the developing brain. However, these studies do not offer detailed pathophysiological mechanisms, and they rely on relatively severe infectious or inflammatory(More)
The hippocampus is known to be vulnerable to hypoxia, stress, and undernutrition, all likely to be present in fetal intrauterine growth restriction (IUGR). The effect of IUGR in preterm infants on the hippocampus was studied using 3D magnetic resonance imaging at term-equivalent age Thirteen preterm infants born with IUGR after placental insufficiency were(More)