Stéphane Schilt

Learn More
Frequency fluctuations of lasers cause a broadening of their line shapes. Although the relation between the frequency noise spectrum and the laser line shape has been studied extensively, no simple expression exists to evaluate the laser linewidth for frequency noise spectra that does not follow a power law. We present a simple approach to this relation(More)
A theoretical model of wavelength modulation spectroscopy that uses a laser diode on a Lorentzian absorption line is presented. This theory describes the general case of a current-modulated semiconductor laser, for which a combined intensity and frequency modulation with an arbitrary phase shift occurs. On the basis of this model, the effect of several(More)
Laser frequency fluctuations can be characterized either comprehensively by the frequency noise spectrum or in a simple but incomplete manner by the laser linewidth. A formal relation exists to calculate the linewidth from the frequency noise spectrum, but it is laborious to apply in practice. We recently proposed a much simpler geometrical approximation(More)
First investigations of photoacoustic (PA) spectroscopy (PAS) of methane using an antimonide semiconductor laser are reported. The laser fabrication is made in two steps. The structure is firstly grown by molecular beam epitaxy, then a metallic distributed-feedback (DFB) grating is processed. The laser operates at 2371.6 nm in continuous wave and at room(More)
An ammonia traces analyser based on photoacoustic spectroscopy is described. The system uses a CO(2) laser and a properly designed resonant photoacoustic cell to achieve ammonia detection at sub-parts-per-billion (ppb) level. The instrument features unattended automatic on-line monitoring of ammonia with a detection limit of 0.1 ppb. Interferences from(More)
Multi-hydrogenated compounds detection based on photoacoustic (PA) spectroscopy is reported. Three near-infrared semiconductor lasers are used with a resonant PA cell operated in its first longitudinal mode to monitor methane, water vapour and hydrogen chloride in the parts per million range. The design of our cell results from simulations performed in(More)
An experimental method is presented for characterization of the combined intensity and frequency modulation produced when the injection current of a laser diode is modulated. The reported technique is based on the analysis of the harmonic signals produced when a modulated laser is used to probe a gas absorption line by the so-called wavelength-modulation(More)
Spectroscopic measurements on ethylene were performed using a quasi-room-temperature quantum cascade (QC) laser operated in pulsed mode in the 10.3 microm range. Using transmission spectroscopy, a broadening of the ethylene absorption spectrum was observed with increasing laser pulse duration, due to an increase of the laser linewidth. This linewidth was(More)
A photoacoustic multi-gas sensor using tuneable laser diodes in the near-infrared region is reported. An optimized resonant configuration based on an acoustic longitudinal mode is described. Automatic tracking of the acoustic resonance frequency using a piezo-electric transducer and a servo electronics is demonstrated. Water vapour, methane and hydrogen(More)
A theoretical description of photoacoustic spectroscopy generated by wavelength modulation of a semiconductor laser source is reported for a Lorentzian absorption line. This model describes the first-and second-harmonic photoacoustic signals produced by a current-modulated semiconductor laser. Combined intensity-and wavelength-modulation is considered with(More)