Stéphane Peineau

Learn More
Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have(More)
Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA(More)
Glycogen synthase kinase-3 (GSK-3), an important component of the glycogen metabolism pathway, is highly expressed in the CNS. It has been implicated in major neurological disorders including Alzheimer's disease, schizophrenia and bipolar disorders. Despite its central role in these conditions it was not known until recently whether GSK-3 has(More)
Stéphane Peineau, Changiz Taghibiglou, Clarrisa Bradley, Tak Pan Wong, Lidong Liu, Jie Lu, Edmond Lo, Dongchuan Wu, Emilia Saule, Tristan Bouschet, Paul Matthews, John T.R. Isaac, Zuner A. Bortolotto, Yu Tian Wang, and Graham L. Collingridge* MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, Bristol, BS8(More)
Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known(More)
OBJECTIVE Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in(More)
Hypophysiotropic somatostatin (SRIF) and growth hormone-releasing hormone (GHRH) neurons are primarily involved in the neurohormonal control of growth hormone (GH) secretion. They are located in periventricular (PEV) and arcuate (ARC) hypothalamic nuclei, respectively, but their connectivity is not well defined. To better understand the neuronal network(More)
L-glutamate, the major excitatory neurotransmitter, also has a role in non-neuronal tissues and modulates immune responses. Whether NMDA receptor (NMDAR) signalling is involved in T-cell development is unknown. In this study, we show that mouse thymocytes expressed an array of glutamate receptors, including NMDARs subunits. Sustained calcium (Ca(2+))(More)
JAK-STAT is an efficient and highly regulated system mainly dedicated to the regulation of gene expression. Primarily identified as functioning in hematopoietic cells, its role has been found critical in all cell types, including neurons. This review will focus on JAK-STAT functions in the mature central nervous system. Our recent research suggests the(More)
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is involved in many cellular processes, including cell growth and differentiation, immune functions and cancer. It is activated by various cytokines, growth factors, and protein tyrosine kinases (PTKs) and regulates the transcription of many genes. Of the four JAK(More)