Stéphane Marchand-Maillet

Learn More
Evaluation of retrieval performance is a crucial problem in content-based image retrieval (CBIR). Many di erent methods for measuring the performance of a system have been created and used by researchers. This article discusses the advantages and shortcomings of the performance measures currently used. Problems such as de ning a common image database for(More)
Abstract. To demonstrate the performance of content-based image retrieval systems (CBIRSs), there is not yet any standard data set that is widely used. The only dataset used by a large number of research groups are the Corel Photo CDs. There are more than 800 of those CDs, each containing 100 pictures roughly similar in theme. Unfortunately, basically every(More)
Digital image watermarking techniques for copyright protection have become increasingly robust. The best algorithms perform well against the now standard benchmark tests included in the Stirmark package. However the stirmark tests are limited since in general they do not properly model the watermarking process and consequently are limited in their potential(More)
Relevance feedback has been shown to be a very effective tool for enhancing retrieval results in text retrieval. In content-based image retrieval it is more and more frequently used and very good results have been obtained. However, too much negative feedback may destroy a query as good features get negative weightings. This paper compares a variety of(More)
We propose a privacy protection framework for large-scale content-based information retrieval. It offers two layers of protection. First, robust hash values are used as queries to prevent revealing original content or features. Second, the client can choose to omit certain bits in a hash value to further increase the ambiguity for the server. Due to the(More)
Multi-view clustering is an important problem in information retrieval due to the abundance of data offering many perspectives and generating multi-view representations. We investigate in this short note a late fusion approach for multi-view clustering based on the latent modeling of cluster-cluster relationships. We derive a probabilistic multi-view(More)
In retrieval, indexing and classification of multimedia data an efficient information fusion of the different modalities is essential for the system’s overall performance. Since information fusion, its influence factors and performance improvement boundaries have been lively discussed in the last years in different research communities, we will review their(More)
In this paper we introduce and describe the Multimedia Retrieval Markup Language (MRML). This XML-based markup language is the basis for an open communication protocol for content-based image retrieval systems (CBIRSs). MRML was initially designed as a means of separating CBIR engines from their user interfaces. It is, however, also extensible as the basis(More)