Stéphane Métens

Learn More
Attractive Bose-Einstein condensates are investigated with numerical continuation methods capturing stationary solutions of the Gross-Pitaevskii equation. The branches of stable (elliptic) and unstable (hyperbolic) solutions are found to meet at a critical particle number through a generic Hamiltonian saddle node bifurcation. The condensate decay rates(More)
We start from a continuous extension of a mean field approach of the quorum percolation model, accounting for the response of in vitro neuronal cultures, to carry out a normal form analysis of the critical behavior. We highlight the effects of nonlinearities associated with this mean field approach even in the close vicinity of the critical point.(More)
We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of(More)
  • 1