Learn More
Purpose: In contrast to Adriamycin (ADR), the novel olivacine derivative S16020-2 has demonstrated potent antitumor activity in vitro and in vivo against cell lines displaying the P-glycoprotein (Pgp)-mediated multidrug-resistance phenotype (MDR), suggesting that this compound is not transported by Pgp. The purpose of this work was to study the accumulation(More)
Benzo¿băcronycine (6-methoxy-3,3,14-trimethyl-3, 14-dihydro-7H-benzo¿bpyrano¿3,2-hăcridin-7-one, 4), an acronycine analogue with an additional aromatic ring linearly fused on the natural alkaloid basic skeleton, was synthesized in three steps, starting from 3-amino-2-naphthalenecarboxylic acid (5). Eight 1, 2-dihydroxy-1,2-dihydrobenzo¿băcronycine esters(More)
Seven 1,2-dihydroxy-1,2-dihydroacronycine and 1,2-dihydroxy-1,2-dihydro-6-demethoxyacronycine esters and diesters were synthesized via osmic oxidation of acronycine or 6-demethoxyacronycine followed by acylation. The 6-demethoxyacronycine derivatives were found to be inactive, whereas in contrast, all of the acronycine derivatives were more potent than(More)
S16020-2 is a new olivacine derivative which has recently shown a marked antitumor activity in various experimental models. This study was undertaken in order to measure the inhibition of the proliferation of various sensitive and resistant tumor cell lines, by S16020-2, and to obtain information concerning its mechanism of action. For a continuous(More)
Starting from 2-(2-aminoethyl)-6-methoxy-1-methylcarbazole, ethyl 9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazole-1-carboxylate was obtained through a three-step sequence. This compound and its 6-methyl derivative react with (dialkylamino)alkylamines to provide various 9-methoxy-5-methyl-6H-pyrido[4,3-b]carbazole-1-(N-substituted carboxamides) whose boron(More)
Analogues of the antitumor drug S 16020-2 modified at the 9, 10, or 11 position were synthesized and evaluated in vitro and in vivo on the P388 leukemia and B16 melanoma models. Starting from 9-methoxy-5, 11-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxylic acid ethyl ester, the 11-CH3 analogue of 9-hydroxy-5,6-dimethyl-6H-pyrido[4, 3-b]carbazole-1-carboxylic(More)
The biochemical pathways that lead cells to mitotic catastrophe are not well understood. To identify these pathways, we have taken an approach of treating cells with a novel genotoxic compound and characterizing whether cells enter mitotic catastrophe or not. S23906 is a novel acronycine derivative that forms adducts with the N2 residue of guanine in the(More)
The cytotoxicity and the cell-cycle action of altholactone (1), goniofufurone (2), and eight altholactone derivatives (5-12), were determined in vitro on L-1210 cells. Semisyntheses and structure-activity relationships of these compounds are described. The results of this study suggest that the cytotoxicity of altholactone (1), 11-nitro-altholactone (8),(More)
A series of 36 purine and purine analog derivatives have been synthesized and tested for their ability to modulate multidrug resistance in vitro (P388/VCR-20 and KB-A1 cells) and in vivo (P388/VCR leukemia). Compounds were compared to S9788, a triazine derivative which has already shown some activity during phase 1 clinical trials and also a limiting(More)
A series of 1-substituted 3,4-dihydroisoquinolines were synthesized and tested in vitro against the leukemia L 1210 cell line to evaluate their ability to perturb the cell cycle by arresting cells in the G1 phase. 1-Benzoylimines, 1-phenylimines, and 1-alkylimines were synthesized. The most powerful cytotoxic derivatives, 1-benzoyl-3,4-dihydroisoquinolines(More)