Stéphane Egée

Learn More
BACKGROUND The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated(More)
Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part(More)
BACKGROUND Sphingolipids are key molecules regulating many essential functions in eukaryotic cells and ceramide plays a central role in sphingolipid metabolism. A sphingolipid metabolism occurs in the intraerythrocytic stages of Plasmodium falciparum and is associated with essential biological processes. It constitutes an attractive and potential target for(More)
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte(More)
In this paper, we provide an update on cation channels in nucleated chicken erythrocytes. Patch-clamp techniques were used to further characterize the two different types of cation channels present in the membrane of chicken red blood. In the whole-cell mode, with Ringer in the bath and internal K+ saline in the pipette solution, the membrane conductance(More)
The patch-clamp technique was used to demonstrate the presence of ATP-sensitive K(+) channels and Ca(2+)-activated K(+) channels in lamprey ( Petromyzon marinus) red blood cell membrane. Whole-cell experiments indicated that the membrane current under isosmotic (285 mosmol l(-1)) conditions is carried by K(+). In the inside-out configuration an(More)
(1) An outwardly rectifying chloride channel (ORCC) of large conductance has been detected under isotonic conditions (320 mosM 1(-1)) in the plasma membrane of trout red blood cells (RBCs) using the excised inside-out configuration. The channel, with a permeability ratio P(Cl)/Pcation of 12, was inhibited by the Cl- channel blockers(More)
1. The cell-attached and excised inside-out configurations of the patch-clamp technique were used to demonstrate the presence of two different types of ion channels in the membrane of trout red blood cells under isotonic and normoxic conditions, in the absence of hormonal stimulation. The large majority (93%) of successful membrane seals allowed observation(More)
1. The nystatin-perforated whole-cell recording mode of the patch-clamp technique was used to investigate the membrane conductance of trout (Oncorhynchus mykiss) red blood cells in the steady state, 5 min after exposure to hyposmotic medium and 10 min after return to normal isosmotic medium. 2. Whole-cell I-V relations showed outward rectification when red(More)
  • 1