Stéphane Barakat

Learn More
p-glycoprotein (p-gp) is an ATP-binding cassette transporter and its overexpression is responsible for the acquisition of the multidrug resistance phenotype in human tumors. p-gp is localized at the blood-brain barrier and is involved in brain cytoprotection. Our previous work used immunoprecipitation to show that caveolin-1 can interact with p-gp. In this(More)
The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G(0), whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G(0)-G(1)(More)
P-glycoprotein (P-gp) is the most well-known ATP-binding cassette (ABC) transporter involved in unidirectional substrate translocation across the membrane lipid bilayer, thereby causing the typical multidrug resistance (MDR) phenotype expressed in many cancers. We observed that in human CEM acute lymphoblastic leukemia cells expressing various degrees of(More)
P-glycoprotein (P-gp), an ABC-transporter highly expressed in brain capillaries, protects the brain by extruding xenobiotics. However, its overexpression has also been associated with the multidrug resistance phenotype in tumors. Here, we have investigated the regulation of P-gp transport activity by sphingosine kinase 1 (SphK-1) in brain endothelial cells.(More)
Considerable interest exists about the localization of P-gp (P-glycoprotein) in DRMs (detergent-resistant membranes) of multidrug resistant cancer cells, in particular concerning the potential modulating role of the closely related lipids and proteins on P-gp activity. Our observation of the opposite effect of verapamil on P-gp ATPase activity from DRM and(More)
We have investigated the involvement of P-glycoprotein (P-gp)/caveolin-1 interaction in the regulation of brain endothelial cells (EC) migration and tubulogenesis. P-gp overexpression in MDCK-MDR cells was correlated with enhanced cell migration whereas treatment with P-gp inhibitors CsA or PSC833 reduced it. Transfection of RBE4 rat brain endothelial cells(More)
Uveal melanoma is the most common intraocular malignancy. To study its biology, stable cell lines provide a useful tool, but these are very difficult to obtain. A stable and rapidly growing human choroidal melanoma cell line composed of pure epithelioid cells was established and maintained for at least 4 years. In vivo transplantation into BALB/cByJ nude(More)
Uveal melanoma is the most frequent intra-ocular cancer. The recent development of new chromosome-related technologies have permitted the elucidation of both the cytogenetics and the natural history of this disease. Fifty to 60% of uveal melanomas are linked to a monosomy 3, which appears as an early and determinant event in tumor progression. Tumors with(More)
LRP130 is a ubiquitous protein involved in cellular homeostasis, microtubule alteration, and transactivation of a few multidrug resistance genes. Its role in resistance to apoptosis in HepG2 and HUH7 hepatocarcinoma cells was investigated. Using shRNA-producing lentiviruses to down-regulate the LRP130 gene, we showed that i) LRP130 did not affect the(More)