Stéphane Bézieau

Learn More
Colorectal cancer is the second leading cause of cancer death in developed countries. Genome-wide association studies (GWAS) have successfully identified novel susceptibility loci for colorectal cancer. To follow up on these findings, and try to identify novel colorectal cancer susceptibility loci, we present results for GWAS of colorectal cancer (2,906(More)
BACKGROUND Sporadic colorectal cancers (CRC) are multifactorial diseases resulting from the combined effects of numerous genetic, environmental and behavioral risk factors. Genetic association studies have suggested low-penetrance alleles of extremely varied genes to be involved in susceptibility to CRC in Caucasian populations. METHODS Through a large(More)
The genetic basis of sporadic colorectal cancer (CRC) is not well explained by known risk polymorphisms. Here we perform a meta-analysis of two genome-wide association studies in 2,627 cases and 3,797 controls of Japanese ancestry and 1,894 cases and 4,703 controls of African ancestry, to identify genetic variants that contribute to CRC susceptibility. We(More)
We have read with much interest the article Gottlieb et al. [2009] about BAK1 (MIM] 600516), as well as the epistolary exchange with Dr. Hatchwell that followed [Gottlieb et al., 2010; Hatchwell, 2010]. Our reading was all the more careful that the message delivered by the authors was strong, and was largely echoed and amplified in many scientific and(More)
Genome-wide association studies (GWAS) have successfully identified a number of single-nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG) is considered to be one source of the missing heritability. To(More)
Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. However, partially due to the lack of power, there have been very few replicated G × E findings compared to the success in marginal association studies. The existing G × E testing methods mainly focus on improving the power for individual(More)
Hath1, a bHLH transcription factor negatively regulated by the γ-secretase-dependent Notch pathway, is required for intestinal secretory cell differentiation. Our aim was fourfold: 1) determine whether Hath1 is able to alter the phenotype of colon cancer cells that are committed to a differentiated phenotype, 2) determine whether the Hath1-dependent(More)
The EGFR 3′ untranslated region (UTR) harbors a polyadenine repeat which is polymorphic (A13/A14) and undergoes somatic deletions in microsatellite instability (MSI) colorectal cancer (CRC). These mutations could be oncogenic in colorectal tissue since they were shown to result into increased EGFR mRNA stability in CRC cell lines. First, we determined in a(More)
Homozygous frameshift variants in CNTNAP1 have recently been reported in patients with arthrogryposis and abnormal axon myelination. In two brothers with severe congenital hypotonia and foot deformities, we identified compound heterozygous variants in CNTNAP1, reporting the first causative missense variant, p.(Cys323Arg). Motor nerve conductions were(More)
Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel of crucial role in hippocampal neuron excitation homeostasis. KCNB1 mutations are known to cause early-onset infantile epilepsy. To date, 10 KCNB1 mutations have been described in 11 patients. Using whole-exome sequencing, we identified a novel de novo missense(More)