Stéphan Tulkens

Learn More
Word embeddings have recently seen a strong increase in interest as a result of strong performance gains on a variety of tasks. However, most of this research also underlined the importance of benchmark datasets, and the difficulty of constructing these for a variety of language-specific tasks. Still, many of the datasets used in these tasks could prove to(More)
In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no(More)
We present a dictionary-based approach to racism detection in Dutch social media comments, which were retrieved from two public Belgian social media sites likely to attract racist reactions. These comments were labeled as racist or non-racist by multiple annotators. For our approach, three discourse dictionaries were created: first, we created a dictionary(More)
  • 1