Learn More
Word embeddings have recently seen a strong increase in interest as a result of strong performance gains on a variety of tasks. However, most of this research also underlined the importance of benchmark datasets, and the difficulty of constructing these for a variety of language-specific tasks. Still, many of the datasets used in these tasks could prove to(More)
Clinical NLP has an immense potential in contributing to how clinical practice will be revolutionized by the advent of large scale processing of clinical records. However , this potential has remained largely untapped due to slow progress primarily caused by strict data access policies for researchers. In this paper, we discuss the concern for privacy and(More)
The CEGS N-GRID 2016 Shared Task (Filannino et al., 2017) in Clinical Natural Language Processing introduces the assignment of a severity score to a psychiatric symptom, based on a psychiatric intake report. We present a method that employs the inherent interview-like structure of the report to extract relevant information from the report and generate a(More)
In this paper, we report a knowledge-based method for Word Sense Disambiguation in the domains of biomedical and clinical text. We combine word representations created on large corpora with a small number of definitions from the UMLS to create concept representations, which we then compare to representations of the context of ambiguous terms. Using no(More)
We present a dictionary-based approach to racism detection in Dutch social media comments, which were retrieved from two public Belgian social media sites likely to attract racist reactions. These comments were labeled as racist or non-racist by multiple annotators. For our approach, three discourse dictionaries were created: first, we created a dictionary(More)
  • 1