Sriram Boothalingam

Learn More
OBJECTIVE To study whether a change in cochlear tuning, measured using OAEs, could be detected due to contralateral activation of the efferent system using broadband noise. DESIGN Cochlear tuning measures based on SFOAE phase gradients and SFOAE-2TS 'Q' were used to test this hypothesis. SFOAE magnitude and phase gradient were measured using a pure-tone(More)
Click evoked otoacoustic emissions (CEOAEs) are commonly used both in research and clinics to assay the medial olivocochlear system (MOC). Clicks presented at rates >50 Hz in the contralateral ear have previously been reported to evoke contralateral MOC activity. However, in typical MOC assays, clicks are presented in the ipsilateral ear in conjunction with(More)
It is well known that medial olivocochlear system (MOC) activity causes inhibition of cochlear amplification that can be measured using otoacoustic emissions (OAEs). The temporal characteristics of this MOC inhibitory effect are still not well understood. Two experiments were performed to further explore a previously reported enhancement in MOC inhibition(More)
Children as young as 5 yr old localize sounds as accurately as adults in quiet in the frontal hemifield. However, children's ability to localize in noise and in the front/back (F/B) dimension are scantily studied. To address this, the first part of this study investigated localization-in-noise ability of children vs young adults in two maskers: broadband(More)
Behavioral manifestations of processing deficits associated with auditory processing disorder (APD) have been well documented. However, little is known about their anatomical underpinnings, especially cochlear processing. Cochlear delays, a proxy for cochlear tuning, measured using stimulus frequency otoacoustic emission (SFOAE) group delay, and the(More)
Otoacoustic emissions, sounds generated in the inner ear, have become a convenient non-invasive tool to examine the efferent modulation of cochlear mechanics. Activation of the medial olivocochlear (MOC) efferents has been shown to alter the magnitude of these emissions. When the effects of efferent activation on the detailed spectral structures of these(More)
  • 1