Learn More
Imaging single fluorescent proteins in living mammalian cells is challenged by out-of-focus fluorescence excitation. To reduce out-of-focus fluorescence we developed reflected light-sheet microscopy (RLSM), a fluorescence microscopy method allowing selective plane illumination throughout the nuclei of living mammalian cells. A thin light sheet parallel to(More)
The polarity protein complex Par6/atypical protein kinase (aPKC)/Cdc42 regulates polarization processes during epithelial morphogenesis, astrocyte migration, and axon specification. We, as well as others, have shown that this complex is also required for disruption of apical-basal polarity during the oncogene ErbB2-induced transformation and transforming(More)
Imaging of nucleic acids is important for studying cellular processes such as cell division and apoptosis. A noninvasive label-free technique is attractive. Raman spectroscopy provides rich chemical information based on specific vibrational peaks. However, the signal from spontaneous Raman scattering is weak and long integration times are required, which(More)
Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic(More)
Single-molecule localisation microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal 'snapshots' of how proteins are arranged on(More)
A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of(More)
Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above(More)
  • 1