Srinivasan Raghavan

Learn More
Although multiple models of care exist to prevent the development of delirium in hospitalized patients, models for the management of patients for whom delirium is unpreventable or who already have delirium on admission to the hospital are needed. This article describes the development, management, and economics of a new model of care for patients with(More)
Combining the electronic properties of graphene and molybdenum disulphide (MoS2) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids, but they do not make use of the photosensitivity of MoS2, which arises from its(More)
A distinctive feature of single-layer graphene is the linearly dispersive energy bands, which in the case of multilayer graphene become parabolic. A simple electrical transport-based probe to differentiate between these two band structures will be immensely valuable, particularly when quantum Hall measurements are difficult, such as in chemically(More)
Grain boundaries (GBs) are undesired in large area layered 2D materials as they degrade the device quality and their electronic performance. Here we show that the grain boundaries in graphene which induce additional scattering of carriers in the conduction channel also act as an additional and strong source of electrical noise especially at the room(More)
Graphene layers have been transferred directly on to paper without any intermediate layers to yield G-paper. Resistive gas sensors have been fabricated using strips of G-paper. These sensors achieved a remarkable lower limit of detection of ∼300 parts per trillion (ppt) for NO2, which is comparable to or better than those from other paper-based sensors.(More)
Combining oblique angle deposition with standard graphene transfer protocols, two planar arrays of metal nanoparticles are fabricated that are vertically separated by atomic dimensions, corresponding precisely to the thickness of a single layer of graphene, i.e., 0.34 nm. Upon illumination of light at an appropriate wavelength, the local electromagnetic(More)
The effects of contact architecture, graphene defect density and metal-semiconductor work function difference on the resistivity of metal-graphene contacts have been investigated. An architecture with metal on the bottom of graphene is found to yield resistivities that are lower, by a factor of four, and most consistent as compared to metal on top of(More)
A detailed thermodynamic analysis of the solid and gas phases of the Mo-S-C-O-H system used for large area chemical vapor deposition (CVD) of MoS2 is presented and compared with experimental results. Given the multivariable nature of the problem, excellent agreement is observed. Deviations, observed from thermodynamic predictions, mainly at low temperatures(More)
Flexible, transparent, and moisture-impermeable materials are critical for packaging applications in electronic, food, and pharmaceutical industries. Here, we report that a single graphene layer embedded in a flexible polymer reduces its water vapor transmission rate (WVTR) by up to a million-fold. Large-area, transparent, graphene-embedded polymers (GEPs)(More)