Learn More
Ochratoxin A (OA); its three natural analogs, ochratoxin C (OC), B (OB), and alpha (Oalpha); and its six synthetic analogs, the epimere of OA (d-OA), the ethylamide of OA (OE-OA), decarboxylated OA (DC-OA), O-methylated OA (OM-OA), lactone-opened OA (OP-OA), and the methyl ester of Oalpha (M-Oalpha) were assayed for their toxicities in prokaryotic (Bacillus(More)
AIMS To determine the effect of a composition comprising ovotransferrin (OT), protamine sulfate (PS) and ethylenediaminetetraacetic acid (EDTA) on biofilm formation by catheter-associated bacteria. METHODS AND RESULTS The in vitro activity of OT, PS and EDTA alone and in combinations against biofilm formation by Escherichia coli, Klebsiella pneumoniae,(More)
The global regulatory system of Escherichia coli, carbon storage regulator (Csr), was engineered to increase the intracellular concentration of phosphoenolpyruvate. We examined the effects of csrA and csrD mutations and csrB overexpression on phenylalanine production in E. coli NST37 (NST). Overexpression of csrB led to significantly greater phenylalanine(More)
OBJECTIVES The objectives of this study were to examine: (i) synergy of the combination of triclosan and DispersinB (DspB); (ii) in vitro efficacy and durability of triclosan + DspB-coated vascular catheters; and (iii) in vivo efficacy of triclosan + DspB-coated catheters compared with chlorhexidine-silver sulfadiazine (CH-SS)-coated and uncoated (control)(More)
Extracellular DNA is an adhesive component of staphylococcal biofilms. The aim of this study was to evaluate the antibiofilm activity of recombinant human DNase I (rhDNase) against Staphylococcus aureus and Staphylococcus epidermidis. Using a 96-well microtiter plate crystal-violet binding assay, we found that biofilm formation by S. aureus was efficiently(More)
The colonization of uropathogenic bacteria on urinary catheters resulting in biofilm formation frequently leads to the infection of surrounding tissue and often requires removal of the catheter. Infections associated with biofilms are difficult to treat since they may be more than 1,000 times more resistant to antibiotics than their planktonic counterparts.(More)
OBJECTIVES The objectives of this study were to examine: (i) the potential in vitro synergy of combining protamine sulphate (PS) with chlorhexidine (CHX); (ii) the in vitro spectrum and durability of antimicrobial activity of CHX + PS-coated catheters; and (iii) the in vivo efficacy of CHX + PS-coated catheters in comparison with silver-hydrogel-coated and(More)
We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices(More)
Since the traditional methods of treatment have proven ineffective against chronic wounds involving biofilms, the present study evaluates the in vitro efficacy of a novel wound gel comprising an antibiofilm DispersinB ® enzyme and a broad-spectrum antimicrobial triclosan against chronic wound-associated bacteria. The antimicrobial and antibiofilm activity(More)
We demonstrated the production of poly-β-1,6-N-acetylglucosamine (PNAG) polysaccharide in the biofilms of Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia cepacia, and Burkholderia cenocepacia using an immunoblot assay for PNAG. These results were confirmed by further studies, which showed that the PNAG hydrolase,(More)