Srinivas Raghothama

Learn More
The two N-terminally repeated carbohydrate-binding modules (CBM4-1 and CBM4-2) encoded by xyn10A from Rhodothermus marinus were produced in Escherichia coli and purified by affinity chromatography. Binding assays to insoluble polysaccharides showed binding to insoluble xylan and to phosphoric-acid-swollen cellulose but not to Avicel or crystalline(More)
One of the major unsolved problems in parametric solid modeling is a robust update (regeneration) of the solid's boundary representation, given a specified change in the solid's parameter values. The fundamental difficulty lies in determining the mapping between boundary representations for solids in the same parametric family. Several heuristic approaches(More)
The majority of plant cell wall hydrolases are modular enzymes which, in addition to a catalytic module, possess one or more carbohydrate-binding modules (CBMs). These carbohydrate-active enzymes and their constituent modules have been classified into a number of families based upon amino acid sequence similarity. The Clostridium thermocellum xylanase,(More)
Plant cell wall hydrolases generally have a modular structure consisting of a catalytic domain linked to one or more noncatalytic carbohydrate-binding modules (CBMs), whose common function is to attach the enzyme to the polymeric substrate. Xylanase A from Pseudomonas fluorescens subsp. cellulosa (Pf Xyn10A) consists of a family 10 catalytic domain, an(More)
Dual representation systems rely on a parametric model to create and to manipulate the boundary representation of a solid. Parametric and boundary representations remain consistent if they continue to model the same solid, after updates applied to the parametric model and/or to the boundary representation. We consider the problem of verifying the(More)
The recycling of photosynthetically fixed carbon in plant cell walls is a key microbial process. In anaerobes, the degradation is carried out by a high molecular weight multifunctional complex termed the cellulosome. This consists of a number of independent enzyme components, each of which contains a conserved dockerin domain, which functions to bind the(More)
One of the fundamental unsolved problems in geometric design of mechanical solids has been the lack of a proper notion of family or class. Numerous heuristic and often incompatible definitions are used throughout the CAD industry, and it is usually not clear how to generate members of a family or, to decide if a given object belongs to an assumed family.(More)
One of the key unsolved problems in parametric solid modeling is a robust update (regeneration) of the solid’s boundary representation, given a specified change in solid’s parameter values. The fundamental difficulty lies in determining the mapping between boundary representations for solids in the same parametric family, also known as “persistent naming.”(More)
Constructive representations, such as Constructive Solid Geometry (CSG) and its various feature-based extensions are inherently parametric in nature and are well suited for defining parametric family of solids. On the other hand, cell complex representations contain explicit shape elements (cells) and also their topology. However they are non-constructive,(More)
This work proposes an algorithm for designing a simple End Effector configuration for a robotic arm which is able to grasp a given set of objects. The algorithm searches for a common 3-finger grasp over a set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account an external wrench(More)