Learn More
Multiple members of the let-7 family of miRNAs are often repressed in human cancers, thereby promoting oncogenesis by derepressing targets such as HMGA2, K-Ras and c-Myc. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins LIN28 and LIN28B block let-7 precursors from being processed to mature miRNAs,(More)
MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked posttranscriptionally in embryonic stem cells, embryonal carcinoma cells, and primary tumors. Here we show that Lin28,(More)
The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwart efforts to investigate molecular mechanisms of germ-cell specification. stella (also called Dppa3) marks the rare founder population of the germ lineage. Here we differentiate mouse embryonic stem cells carrying a stella transgenic reporter into putative(More)
Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt(More)
The developmentally regulated RNA-binding protein Lin28 blocks processing of let-7 family microRNAs (miRNAs) in embryonic cells. The molecular basis for this selective miRNA processing block is unknown. Here we find that Lin28 selectively binds the terminal loop region of let-7 precursors in vitro and that the loop mediates miRNA processing inhibition in(More)
Recently, genome-wide association studies have implicated the human LIN28B locus in regulating height and the timing of menarche. LIN28B and its homolog LIN28A are functionally redundant RNA-binding proteins that block biogenesis of let-7 microRNAs. lin-28 and let-7 were discovered in Caenorhabditis elegans as heterochronic regulators of larval and vulval(More)
In blastocyst chimeras, embryonic stem (ES) cells contribute to embryonic tissues but not extraembryonic trophectoderm. Conditional activation of HRas1(Q61L) in ES cells in vitro induces the trophectoderm marker Cdx2 and enables derivation of trophoblast stem (TS) cell lines that, when injected into blastocysts, chimerize placental tissues. Erk2, the(More)
BACKGROUND Segregation of the trophectoderm from the inner cell mass of the embryo represents the first cell-fate decision of mammalian development. Transcription factors essential for specifying trophectoderm have been identified, but the role of microRNAs (miRNAs) in modulating this fate-choice has been largely unexplored. We have compared miRNA(More)
Multiple members of the let-7 family of miRNAs are often repressed in human cancers1,2, thereby promoting oncogenesis by de-repressing the targets K-Ras, c-Myc, and HMGA2 3,4. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding Users may view, print, copy, and download text and data-mine the content in such(More)