Learn More
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases.(More)
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase(More)
Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide-major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor(More)
Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the(More)
Myeloid-derived suppressor cells are one of the major factors responsible for immune suppression in cancer. They also contribute to limited efficacy of current vaccination strategies. Here, we give an overview of the myeloid-derived suppressor cells field focusing primarily on the studies in cancer patients and current and future therapeutic options(More)
Dendritic cells (DCs), a type of professional antigen-presenting cells, are responsible for initiation and maintenance of immune responses. Here we report that a substantial proportion of DCs in tumor-bearing mice and people with cancer have high amounts of triglycerides as compared with DCs from tumor-free mice and healthy individuals. In our studies,(More)
PURPOSE Myeloid-derived suppressor cells (MDSC) are one of the major factors responsible for immune suppression in cancer. Therefore, it would be important to identify effective therapeutic means to modulate these cells. EXPERIMENTAL DESIGN We evaluated the effect of the synthetic triterpenoid C-28 methyl ester of 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic(More)
Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1(+)CD11b(+) population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly(More)
T-cell nonresponsiveness is a critical factor in immune escape and myeloid-derived suppressor cells play a major role in organizing this phenomenon. Recent findings indicate that myeloid-derived suppressor cells can induce antigen-specific CD8(+) T-cell tolerance through a posttranslation mechanism which involves modification (nitration) of CD8 and the(More)
Cancer immunotherapy faces a serious challenge because of low clinical efficacy. Recently, a number of clinical studies have reported the serendipitous finding of high rates of objective clinical response when cancer vaccines are combined with chemotherapy in patients with different types of cancers. However, the mechanism of this phenomenon remains(More)