Learn More
Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide-major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor(More)
Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1(+)CD11b(+) population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly(More)
Dendritic cells (DCs), a type of professional antigen-presenting cells, are responsible for initiation and maintenance of immune responses. Here we report that a substantial proportion of DCs in tumor-bearing mice and people with cancer have high amounts of triglycerides as compared with DCs from tumor-free mice and healthy individuals. In our studies,(More)
T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T(More)
PURPOSE Myeloid-derived suppressor cells (MDSC) are one of the major factors responsible for immune suppression in cancer. Therefore, it would be important to identify effective therapeutic means to modulate these cells. EXPERIMENTAL DESIGN We evaluated the effect of the synthetic triterpenoid C-28 methyl ester of 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic(More)
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that play a major role in the regulation of immune responses in many pathological conditions. These cells have a common myeloid origin, relatively immature state, common genetic and biochemical profiles, and, most importantly, the ability to inhibit immune responses.(More)
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Myeloid-derived suppressor cells (MDSC) play a major role in cancer-related immune suppression, yet the nature of this suppression remains controversial. In this study, we evaluated the ability of MDSC to elicit CD4+ T cell tolerance in different(More)
Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the(More)
Ag-specific T cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSCs) in the induction of CD8(+) T cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of Ag-specific CD8(+) T cells, with peptide-loaded MDSCs, did not(More)
T-cell nonresponsiveness is a critical factor in immune escape and myeloid-derived suppressor cells play a major role in organizing this phenomenon. Recent findings indicate that myeloid-derived suppressor cells can induce antigen-specific CD8(+) T-cell tolerance through a posttranslation mechanism which involves modification (nitration) of CD8 and the(More)