Learn More
Respiratory motoneuron response to hypoxia is reflex in nature and carotid body sensory receptor constitutes the afferent limb of this reflex. Recent studies showed that repetitive exposures to hypoxia evokes long term facilitation of sensory nerve discharge (sLTF) of the carotid body in rodents exposed to chronic intermittent hypoxia (CIH). Although(More)
The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration(More)
Reactive oxygen species (ROS) generated by vascular endothelial and smooth muscle cells contribute to the development and progression of vascular diseases. We have recently shown that hyperoxia enhances NADPH oxidase 4 (Nox4) expression, which regulates lung endothelial cell migration and angiogenesis. Regulation of Nox4 in the vasculature is poorly(More)
A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate(More)
In mammalian organs under normoxic conditions, O2 concentration ranges from 12% to <0.5%, with O2 approximately 14% in arterial blood and <10% in the myocardium. During mild hypoxia, myocardial O2 drops to approximately 1% to 3% or lower. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent(More)
The alveolar epithelium is composed of the flat type I cells comprising 95% of the gas-exchange surface area and cuboidal type II cells comprising the rest. Type II cells are described as facultative progenitor cells based on their ability to proliferate and trans-differentiate into type I cells. In this study, we observed that pneumonia induced by(More)
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and(More)
In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells(More)
The generation of reactive oxygen species (ROS) plays a major role in endothelial signaling and function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase (Nox) family of proteins, Nox1, Nox2, Nox4 and Nox5, are major contributors of ROS. Excess generation of ROS contributes to the development and progression of(More)
Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production(More)