Srikanth B. Yoginath

Learn More
With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new,(More)
Cloud and Virtual Machine (VM) technologies present new challenges with respect to performance and monetary cost in executing parallel discrete event simulation (PDES) applications. Due to the introduction of overall cost as a metric, the traditional use of the highest-end computing configuration is no longer the most obvious choice. Moreover, the unique(More)
The concept of co-allocation provides a simple mechanism to request and bind resources in a coordinated fashion in Grids across virtual organization boundaries. We have designed an advanced multi-stage co-allocation strategy based on resource hierarchies defined through user-specific patterns. The model manages simple flows between resources to perform(More)
Scripting languages such as R and Matlab are widely used in scientific data processing. As the data volume and the complexity of analysis tasks both grow, sequential data processing using these tools often becomes the bottleneck in scientific workflows. We describe pR, a runtime framework for automatic and transparent parallelization of the popular R(More)
Vehicular traffic simulations are useful in applications such as emergency management and homeland security planning tools. High speed of traffic simulations translates directly to speed of response and level of resilience in those applications. Here, a parallel traffic simulation approach is presented that is aimed at reducing the time for simulating(More)
Ultrascale computing and high-throughput experimental technologies have enabled the production of scientific data about complex natural phenomena. With this opportunity, comes a new problem – the massive quantities of data so produced. Answers to fundamental questions about the nature of those phenomena remain largely hidden in the produced data. The goal(More)
Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less(More)
With the growing popularity of parallel computation, researchers are looking for various means to reduce the problem solving time by performing the computations in parallel. While, interested in parallel computation they do not want to deal with the parallel programming complexities. In this paper, through RScaLAPACK we demonstrate a means that enables the(More)
A methodology and its associated algorithms are presented for mapping a novel, field-based vehicular mobility model onto graphical processing unit computational platform for simulating mobility in large-scale road networks. Of particular focus is the achievement of real-time execution, on desktop platforms, of vehicular mobility on road networks comprised(More)