Learn More
Presented is an approach to modelling session variability for GMM-based text-independent speaker verification incorporating a constrained session variability component in both the training and testing procedures. The proposed technique reduces the data labelling requirements and removes discrete cat-egorisation needed by techniques such as feature mapping(More)
This article describes a general and powerful approach to modelling mismatch in speaker recognition by including an explicit session term in the Gaussian mixture speaker modelling framework. Under this approach, the Gaussian mixture model (GMM) that best represents the observations of a particular recording is the combination of the true speaker model with(More)
In this paper, we present an approach we refer to as "least squares congealing" which provides a solution to the problem of aligning an ensemble of images in an unsupervised manner. Our approach circumvents many of the limitations existing in the canonical "congealing" algorithm. Specifically, we present an algorithm that:- (i) is able to simultaneously,(More)
Automatically recognizing pain from video is a very useful application as it has the potential to alert carers to patients that are in discomfort who would otherwise not be able to communicate such emotion (i.e young children, patients in postoperative care etc.). In previous work [1], a "pain-no pain" system was developed which used an AAM-SVM approach to(More)
The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a(More)
— In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well(More)
(2011) Gait energy volumes and frontal gait recognition using depth images. c (c) 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or(More)
This paper investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. It has been previously shown in our own work, and in the work of others, that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features.(More)