Sricharan Bandhakavi

Learn More
Insulin stimulates protein synthesis and cell growth by activation of the protein kinases Akt (also known as protein kinase B, PKB) and mammalian target of rapamycin (mTOR). It was reported that Akt activates mTOR by phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2). However, in recent studies the physiological requirement of Akt(More)
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In(More)
We report here the identification of CDC37, which encodes a putative Hsp90 co-chaperone, as a multicopy suppressor of a temperature-sensitive allele (cka2-13(ts)) of the CKA2 gene encoding the alpha' catalytic subunit of protein kinase CKII. Unlike wild-type cells, cka2-13 cells were sensitive to the Hsp90-specific inhibitor geldanamycin, and this(More)
For proteomic analysis using tandem mass spectrometry, linear ion trap instruments provide unsurpassed sensitivity but unreliably detect low mass peptide fragments, precluding their use with iTRAQ reagent-labeled samples. Although the popular LTQ linear ion trap supports analyzing iTRAQ reagent-labeled peptides via pulsed Q dissociation, PQD, its(More)
The protein kinase mammalian target of rapamycin (mTOR) plays an important role in the coordinate regulation of cellular responses to nutritional and growth factor conditions. mTOR achieves these roles through interacting with raptor and rictor to form two distinct protein complexes, mTORC1 and mTORC2. Previous studies have been focused on mTORC1 to(More)
The human salivary proteome is extremely complex, including proteins from salivary glands, serum, and oral microbes. Much has been learned about the host component, but little is known about the microbial component. Here we report a metaproteomic analysis of salivary supernatant pooled from six healthy subjects. For deep interrogation of the salivary(More)
The modification of proteins by the cytotoxic, reactive aldehyde 4-hydroxynonenal (HNE) is known to alter protein function and impair cellular mechanisms. In order to identify susceptible amino acid sites of HNE modification within complex biological mixtures by microcapillary liquid chromatography and linear ion trap tandem mass spectrometry, we have(More)
Protein sequence database searching of tandem mass spectrometry data is commonly employed to identify post-translational modifications (PTMs) to peptides in global proteomic studies. In these studies, the accurate identification of these modified peptides relies on strategies to ensure high-confidence results from sequence database searching in which(More)
The wealth of biochemical, molecular, genetic, genomic, and bioinformatic resources available in S. cerevisiae make it an excellent system to explore the global role of CK2 in a model organism. Traditional biochemical and genetic studies have revealed that CK2 is required for cell viability, cell cycle progression, cell polarity, ion homeostasis, and other(More)
Comprehensive identification of proteins in whole human saliva is critical for appreciating its full diagnostic potential. However, this is challenged by the large dynamic range of protein abundance within the fluid. To address this problem, we used an analysis platform that coupled hexapeptide libraries for dynamic range compression (DRC) with(More)