Spyridoula Karamanou

Learn More
Recognition of signal sequences by cognate receptors controls the entry of virtually all proteins to export pathways. Despite its importance, this process remains poorly understood. Here, we present the solution structure of a signal peptide bound to SecA, the 204 kDa ATPase motor of the Sec translocase. Upon encounter, the signal peptide forms an(More)
Extra-cytoplasmic polypeptides are usually synthesized as 'preproteins' carrying amino-terminal, cleavable signal peptides and secreted across membranes by translocases. The main bacterial translocase comprises the SecYEG protein-conducting channel and the peripheral ATPase motor SecA. Most proteins destined for the periplasm and beyond are exported(More)
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are(More)
The gene encoding a novel xyloglucanase (Xeg) belonging to family 74 glycoside hydrolases was isolated from a Jonesia sp. strain through functional screening in Escherichia coli. The encoded xyloglucanase is a protein of 972 aminoacyl residues with a 23 residue aminoterminal signal peptide. Over-expression of Xeg in B. subtilis or E. coli failed. In(More)
  • Charalambos Pozidis, Aggeliki Chalkiadaki, Amalia Gomez-Serrano, Henning Stahlberg, Ian Brown, Anastasia P Tampakaki +9 others
  • 2003
Type III protein secretion (TTS) is catalyzed by trans-locases that span both membranes of Gram-negative bacteria. A hydrophilic TTS component homologous to F 1 /V 1-ATPases is ubiquitous and essential for secretion. We show that hrcN encodes the putative TTS ATPase of Pseudomonas syringae pathovar phaseolicola and that HrcN is a peripheral protein that(More)
The cornerstone of the functionality of almost all motor proteins is the regulation of their activity by binding interactions with their respective substrates. In most cases, the underlying mechanism of this regulation remains unknown. Here, we reveal a novel mechanism used by secretory preproteins to control the catalytic cycle of the helicase 'DEAD' motor(More)
SecA is a helicase-like motor that couples ATP hydrolysis with the translocation of extracytoplasmic protein substrates. As in most helicases, this process is thought to occur through nucleotide-regulated rigid-body movement of the motor domains. NMR, thermodynamic and biochemical data show that SecA uses a novel mechanism wherein conserved regions lining(More)
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not(More)
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD(More)
More than 30 years of research have revealed that the dynamic nanomotor SecA is a central player in bacterial protein secretion. SecA associates with the SecYEG channel and transports polypeptides post-translationally to the trans side of the cytoplasmic membrane. It comprises a helicase-like ATPase core coupled to two domains that provide specificity for(More)