Learn More
The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs(More)
Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective,(More)
The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we(More)
Development of peptide-based drugs has been severely limited by lack of oral bioavailability with less than a handful of peptides being truly orally bioavailable, mainly cyclic peptides with N-methyl amino acids and few hydrogen bond donors. Here we report that cyclic penta- and hexa-leucine peptides, with no N-methylation and five or six amide NH protons,(More)
By utilizing structure-based drug design (SBDD) knowledge, a novel class of phosphodiesterase (PDE) 10A inhibitors was identified. The structure-based drug design efforts identified a unique "selectivity pocket" for PDE10A inhibitors, and interactions within this pocket allowed the design of highly selective and potent PDE10A inhibitors. Further(More)
Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the(More)
A series of cyclic peptides were designed and prepared to investigate the physicochemical properties that affect oral bioavailabilty of this chemotype in rats. In particular, the ionization state of the peptide was examined by the incorporation of naturally occurring amino acid residues that are charged in differing regions of the gut. In addition, data was(More)
The tissue distribution of a drug can have significant impact on both its efficacy and safety. As a consequence, selective tissue targeting has become an attractive approach for optimizing the window between efficacy and safety for drug targets that are ubiquitously expressed and important in key physiological processes. Given the liver's key role in(More)
Helix-constrained polypeptides have attracted great interest for modulating protein-protein interactions (PPI). It is not known which are the most effective helix-inducing strategies for designing PPI agonists/antagonists. Cyclization linkers (X1-X5) were compared here, using circular dichroism and 2D NMR spectroscopy, for α-helix induction in simple model(More)
Disrupting the binding interaction between proprotein convertase (PCSK9) and the epidermal growth factor-like domain A (EGF-A domain) in the low-density lipoprotein receptor (LDL-R) is a promising strategy to promote LDL-R recycling and thereby lower circulating cholesterol levels. In this study, truncated 26 amino acid EGF-A analogs were designed and(More)