Spencer P. Lake

Learn More
The objective of this study was to assess the precision and accuracy of a nonproprietary, optical three-dimensional (3D) motion analysis system for the simultaneous measurement of soft tissue strains and joint kinematics. The system consisted of two high-resolution digital cameras and software for calculating the 3D coordinates of contrast markers. System(More)
Modeling of connective tissues often includes collagen fibers explicitly as one of the components. These fibers can be oriented in many directions; therefore, several studies have considered statistical distributions to describe the fiber arrangement. One approach to formulate a constitutive framework for distributed fibers is to express the mechanical(More)
The goals of this study were to investigate the response of the rat supraspinatus tendon to overuse at the molecular level using transcriptional profiling, and to identify potential markers of tendinopathy. Adult rats were subjected to an overuse protocol that consists of downhill running (10% grade) at 17 m/min for 1 h/day, 5 days/week, for a total of(More)
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator(More)
Ligament viscoelasticity controls viscous dissipation of energy and thus the potential for injury or catastrophic failure. Viscoelasticity under different loading conditions is likely related to the organization and anisotropy of the tissue. The objective of this study was to quantify the strain- and frequency-dependent viscoelastic behavior of the human(More)
Hernia meshes significantly reduce the recurrence rates in hernia repair. It is known that they affect the abdominal wall postimplantation, yet the understanding of in vivo mechanics in the mesh placement area is lacking. We established a single C-arm biplane fluoroscopic system to study strains at the interface between the mesh and repaired abdominal(More)
The mechanical role of non-fibrillar matrix and the nature of its interaction with the collagen network in soft tissues remain poorly understood, in part because of the lack of a simple experimental model system to quantify these interactions. This study’s objective was to examine mechanical and structural properties of collagen-agarose co-gels, utilized as(More)
While collagen is recognized as the predominant mechanical component of soft connective tissues, the role of the non-fibrillar matrix (NFM) is less well understood. Even model systems, such as the collagen-agarose co-gel, can exhibit complex behavior, making it difficult to identify relative contributions of specific tissue constituents. In the present(More)
The mechanical behavior of a three-dimensional cross-linked fiber network embedded in matrix is studied in this work. The network is composed from linear elastic fibers which store energy only in the axial deformation mode, while the matrix is also isotropic and linear elastic. Such systems are encountered in a broad range of applications, from tissue to(More)
Prognostic models are developed to assist clinicians in making decisions regarding treatment and follow-up management. The accuracy of these models is often assessed either in terms of their discrimination performance or calibration but rarely both. In this paper, we describe a method for assessing both these aspects using the Harrell C index of(More)