Sowmya Balasubramanian

Learn More
Self-adaptive and self-managing systems optimize their own behaviour according to high-level objectives and constraints. One way for administrators to specify goals for such optimization problems effectively is using policies. Over the past decade, researchers produced various approaches, models and techniques for policy specification in different areas(More)
Inefficient production of membrane-embedded multi-protein complexes by conventional methods has largely prevented the generation of high-resolution structural information and the performance of high-throughput drug discovery screens for this class of proteins. Not exempt from this rule is γ-secretase, an intramembrane-cleaving protease complex regulating a(More)
Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious(More)
We describe a one-liter transfection of suspension-adapted Chinese hamster ovary (CHO-DG44) cells using polyethyleneimine (PEI) for DNA delivery. The method involves transfection at a high cell density (5 × 106 cells/mL) by direct addition of plasmid DNA (pDNA) and PEI to the culture and subsequent incubation at 31 °C with agitation by orbital shaking. We(More)
Background Transposon systems mediate stable integration of exo-genous DNA elements into a host cell genome, and have been successfully used in mammalian cells for the generation of stable cell lines. The piggyBac (PB) trans-poson system has been shown to have several advantages over the other transposon system available [1-3]. It has also been shown to(More)
We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation(More)
Generating purified protein for GLP toxicology studies (GLP-Tox) represents an important and often rate limiting step in the biopharmaceutical drug development process. Toxicity testing requires large amounts of therapeutic protein (>100g), typically produced in a single 500L - 2,500L bioreactor, using the final CHO clonally-derived cell line (CDCL). One(More)
Several naturally occurring vertebrate transposable elements have been genetically modified to enable the transposition of recombinant genes in mammalian cells. We compared three transposons-piggyBac, Tol2, and Sleeping Beauty-for their ability to generate cell pools (polyclonal cultures of recombinant cells) and clonal cell lines for the large-scale(More)
Heterogenous populations of recombinant cells (cell pools) stably expressing 1-4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model proteins-enhanced green fluorescent protein (EGFP), secreted alkaline phosphatase (SEAP), and a monoclonal(More)
Heterogeneous populations of stably transfected cells (cell pools) can serve for the rapid production of moderate amounts of recombinant proteins. Here, we propose the use of the piggyBac (PB) transposon system to improve the productivity and long-term stability of cell pools derived from Chinese hamster ovary (CHO) cells. PB is a naturally occurring(More)