Learn More
Artificial neural networks (ANNs) are non-linear mapping structures based on the function of the human brain. They have been shown to be universal and highly flexible function approximators for any data. These make powerful tools for models, especially when the underlying data relationships are unknown. In this reason, the international workshop on the(More)
Processes governing patterns of richness of riverine fish species at the global level can be modelled using artificial neural network (ANN) procedures. These ANNs are the most recent development in computer-aided identification and are very different from conventional techniques 1,2. Here we use the potential of ANNs to deal with some of the persistent(More)
The method of neural networks was tested for its ability to assign individuals on the basis of their multilocus genotypes, using a data collection of 430 honeybees and 8 microsatellite loci. This data set includes various taxonomical levels (populations within the same subspecies, various subspecies belonging to the same evolutionary lineage, and the 3(More)
  • Ioannis Dimopoulos, J Chronopoulos, A Chronopoulou-Sereli, Sovan Lek
  • 1999
The aim of the present work is to propose a model for the estimation of lead concentration in grasses using urban descriptors easily accessible and to study the specific effect of each descriptor on lead concentration. Six descriptors were considered: the density of vegetation, the vegetation height, wind velocity, height of building, distance of adjacent(More)
The classification and recognition of individual characteristics and behaviours constitute a preliminary step and is an important objective in the behavioural sciences. Current statistical methods do not always give satisfactory results. To improve performance in this area, we present a methodology based on one of the principles of artificial neural(More)
The present work describes a comparison of the ability of multiple linear regression (MLR) and artificial neural networks (ANN) to predict fish spatial occupancy and abundance in a mesotrophic reservoir. Models were run and tested with 306 observations obtained by the sampling point abundance method using electrofishing. For each of the 306 samples, the(More)
Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous(More)
A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers, canals, ditches, lakes, and pools in The Netherlands. By training(More)