Sourour Ammar

Learn More
To explore the Perturb and Combine idea for estimating probability densities, we study mixtures of tree structured Markov networks derived by bagging combined with the Chow and Liu maximum weight spanning tree algorithm, or by pure random sampling. We empirically assess the performances of these methods in terms of accuracy, with respect to mixture models(More)
The recent explosion of high dimensionality in datasets for several domains has posed a serious challenge to existing Bayesian network structure learning algorithms. Local search methods represent a solution in such spaces but suffer with small datasets. MMHC (Max-Min Hill-Climbing) is one of these local search algorithms where a first phase aims at(More)
  • 1