Learn More
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and is influenced by both genetic determinants and smoking. We identified genomic regions from 56 lung-tissue gene-expression microarrays and used them to select 889 SNPs to be tested for association with COPD. We genotyped SNPs in 389 severe COPD cases from the(More)
Peroxisome proliferator-activated receptor (PPAR)-gamma is a member of the nuclear hormone receptor superfamily that can promote cellular differentiation and organ development. PPARgamma expression has been reported in a number of pulmonary cell types, including inflammatory, mesenchymal, and epithelial cells. We find that PPARgamma is prominently expressed(More)
RATIONALE Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified. OBJECTIVES We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the(More)
Astrocytoma is graded as pilocytic (WHO grade I), diffuse (WHO grade II), anaplastic (WHO grade III), and glioblastoma multiforme (WHO grade IV). The progression from low- to high-grade astrocytoma is associated with distinct molecular changes that vary with patient age, yet the prognosis of high-grade tumors in children and adults is equally dismal.(More)
RATIONALE Bronchopulmonary dysplasia (BPD) is a major complication of premature birth. Risk factors for BPD are complex and include prenatal infection and O(2) toxicity. BPD pathology is equally complex and characterized by inflammation and dysmorphic airspaces and vasculature. Due to the limited availability of clinical samples, an understanding of the(More)
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disorder with complex pathological features and largely unknown etiology. The identification of biomarkers for this disease could aid the development of methods to facilitate earlier diagnosis, the classification of disease subtypes, and provide a means to define therapeutic response. To(More)
RATIONALE The mechanisms contributing to alveolar formation are poorly understood. A better understanding of these processes will improve efforts to ameliorate lung disease of the newborn and promote alveolar repair in the adult. Previous studies have identified impaired alveogenesis in mice bearing compound mutations of fibroblast growth factor (FGF)(More)
High-throughput, genome-wide analytical technologies are now commonly used in all fields of medical research. The most commonly applied of these technologies, gene expression microarrays, have been shown to be both accurate and precise when properly implemented. For over a decade, microarrays have provided novel insight into many complex human diseases.(More)
RATIONALE Current understanding of the molecular regulation of lung development is limited and derives mostly from animal studies. OBJECTIVES To define global patterns of gene expression during human lung development. METHODS Genome-wide expression profiling was used to measure the developing lung transcriptome in RNA samples derived from 38 normal(More)
A greater understanding of the regulatory processes contributing to lung development could help ameliorate morbidity and mortality in premature infants and identify individuals at risk for congenital and/or chronic lung diseases. Genomics technologies have provided rich gene expression datasets for the developing lung that enable systems biology approaches(More)