Learn More
PURPOSE The aim of this study was to evaluate a series of dipeptide monoester ganciclovir (GCV) prodrugs with the goal of improving ocular bioavailability of GCV from topical ophthalmic solutions. METHODS Solubility, logP, pH-stability profile, permeability, interaction with corneal peptide transporter, and in vivo efficacy against herpes simplex virus(More)
The bioavailability of drugs is often severely limited due to the presence of biological barriers in the form of epithelial tight junctions, efflux proteins and enzymatic degradation. Physicochemical properties, such as lipophilicity, molecular weight, charge, etc., also play key roles in determining the permeation properties of drug candidates. As a(More)
In today's pharmaceutical arena, it is estimated that more than 40% of new chemical entities produced during drug discovery efforts exhibit poor solubility characteristics. However, over the last decade hot-melt extrusion (HME) has emerged as a powerful processing technology for drug delivery and has opened the door to a host of molecules previously(More)
The objective of this study was to formulate directly compressible rapidly disintegrating tablets of fenoverine with sufficient mechanical integrity, content uniformity, and acceptable palatability to assist patients of any age group for easy administration. Effect of varying concentrations of different superdisintegrants such as crospovidone,(More)
Injectable lipid emulsions, for decades, have been clinically used as an energy source for hospitalized patients by providing essential fatty acids and vitamins. Recent interest in utilizing lipid emulsions for delivering lipid soluble therapeutic agents, intravenously, has been continuously growing due to the biocompatible nature of the lipid-based(More)
PURPOSE The major objectives were to investigate functional expression of nucleoside transporters on the rabbit cornea and to delineate mechanism of corneal permeation of acyclovir (ACV) and idoxuridine (IDU). Methods. Transport studies were conducted with isolated rabbit corneas at 34 degrees C using [(3)H]thymidine, [(3)H]ACV and [(3)H]IDU. RESULTS(More)
Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure(More)
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The(More)
PURPOSE The goal of this study was to develop and characterize indomethacin-loaded solid lipid nanoparticles (IN-SLNs; 0.1% w/v) for ocular delivery. METHODS Various lipids, homogenization pressures/cycles, Tween 80 fraction in the mixture of surfactants (Poloxamer 188 and Tween 80; total surfactant concentration at 1% w/v), and pH were investigated in(More)
This contribution describes a continuous process for the production of solid lipid nanoparticles (SLN) as drug-carrier systems via hot-melt extrusion (HME). Presently, HME technology has not been used for the manufacturing of SLN. Generally, SLN are prepared as a batch process, which is time consuming and may result in variability of end-product quality(More)