Learn More
This contribution describes a continuous process for the production of solid lipid nanoparticles (SLN) as drug-carrier systems via hot-melt extrusion (HME). Presently, HME technology has not been used for the manufacturing of SLN. Generally, SLN are prepared as a batch process, which is time consuming and may result in variability of end-product quality(More)
The overall goal of this project is to enhance ocular delivery of ∆9-Tetrahydrocannabinol (THC) through the topical route. Solubility, stability and in vitro transcorneal permeability of the relatively hydrophilic hemiglutarate ester derivative, THC-HG, was studied in the presence of surfactants. The solutions were characterized with respect to micelle(More)
The aim of this study was to evaluate a novel combination of Soluplus® and hypromellose acetate succinate (HPMCAS-HF) polymers for solubility enhancement as well as enhanced physicochemical stability of the produced amorphous solid dispersions. This was accomplished by converting the poorly water-soluble crystalline form of carbamazepine into a more soluble(More)
The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound.(More)
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high(More)
The objective of the present study was to investigate the effect of topically coadministered P-glycoprotein (P-gp) substrates/inhibitors on the vitreal kinetics of a systemically administered P-gp substrate. Anesthetized male rabbits were used in these studies. The concentration-time profile of quinidine in the vitreous humor, after intravenous(More)
The objective of the present study was to investigate the effects of processing variables and formulation factors on the characteristics of hot-melt extrudates containing a copolymer (Kollidon® VA 64). Nifedipine was used as a model drug in all of the extrudates. Differential scanning calorimetry (DSC) was utilized on the physical mixtures and melts of(More)
Purpose The aim of the present study was to evaluate the utility of the relatively hydrophilic Δ9-tetrahydrocannabinol (THC) prodrugs, mono and di-valine esters (THC-Val and THC-Val-Val) and the amino acid (valine)-dicarboxylic acid (hemisuccinate) ester (THC-Val-HS), with respect to ocular penetration and intraocular pressure (IOP) lowering activity. THC,(More)
The purposes of this project are to enhance the trans-membrane penetration of Δ8-Tetrahydrocannabinol (Δ8-THC) and to study the effect of various lipid based systems in delivering the compound, non-invasively, to anterior and posterior ocular chambers. Solid lipid nanoparticles (SLNs), fast gelling films were manufactured using high pressure homogenization(More)
The objective of the present study is to investigate the confounding effects, if any, of beta-cyclodextrins (βCDs) on corneal permeability coefficients obtained from in vitro transmembrane diffusion studies. Transcorneal permeability studies were carried out with 2-hydroxypropyl-beta-cyclodextrin (HPβCD) and randomly methylated-beta-cyclodextrin (RMβCD) at(More)
  • 1