Souhir Marsit

Learn More
Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome(More)
Although an increasing number of horizontal gene transfers have been reported in eukaryotes, experimental evidence for their adaptive value is lacking. Here, we report the recent transfer of a 158-kb genomic region between Torulaspora microellipsoides and Saccharomyces cerevisiae wine yeasts or closely related strains. This genomic region has undergone(More)
SUMMARY Absynte (Archaeal and Bacterial Synteny Explorer) is a web-based service designed to display local syntenies in completely sequenced prokaryotic chromosomes. The genomic contexts are determined with a multiple center star clustering topology on the basis of a user-provided protein sequence and all (or a set of) chromosomes from the publicly(More)
In the past decade, horizontal gene transfer (HGT) has emerged as a major evolutionary process that has shaped the genome of Saccharomyces cerevisiae wine yeasts. We recently showed that a large Torulaspora microellipsoides genomic island carrying two oligopeptide transporters encoded by FOT genes increases the fitness of wine yeast during fermentation of(More)
The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic(More)
  • 1