Learn More
The Human Metabolome Database (HMDB) (www.hmdb.ca) is a resource dedicated to providing scientists with the most current and comprehensive coverage of the human metabolome. Since its first release in 2007, the HMDB has been used to facilitate research for nearly 1000 published studies in metabolomics, clinical biochemistry and systems biology. The most(More)
The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100(More)
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and(More)
Urine has long been a "favored" biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically(More)
Saliva is a clear, watery biofluid produced by the salivary glands to protect and lubricate the oral cavity. While mostly composed of water (99 %), the chemical composition of saliva is known to change quite dramatically in response to a variety of different physiological states, stimuli, insults and stressors. Unfortunately, among the human biofluids(More)
The rumen is a unique organ that serves as the primary site for microbial fermentation of ingested plant material for domestic livestock such as cattle, sheep and goats. The chemical composition of ruminal fluid is thought to closely reflect the healthy/unhealthy interaction between rumen microflora and diet. Just as diet and feed quality is important for(More)
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic(More)
  • 1