Learn More
Microelectrode recordings of single unit neuronal activity were used during stereotactic surgery to define the subthalamic nucleus for chronic deep brain stimulation in the treatment of Parkinson's disease. By using five parallel trajectories, often two to three microelectrodes allow us to recognize subthalamic nucleus (STN) neuronal activity. STN neurons(More)
The role of the pedunculopontine nucleus (PPN) in the pathophysiology of Parkinson's disease is still unclear. Using microrecordings, we investigated the changes occurring in PPN neurons after lesions of the substantia nigra compacta (SNc) and the role of the subthalamic nucleus (STN) in these changes. In normal rats the firing rate of PPN neurons was 10.6(More)
The pedunculopontine nucleus (PPN) and the subthalamic nucleus (STN) are reciprocally connected by excitatory projections. In the 6-hydroxydopamine (6-OHDA) rat model the PPN was found to be hyperactive. Similarly, the STN and the substantia nigra pars reticulata (SNr) showed increased activity in Parkinson's disease (PD) animal models. A lesion of the STN(More)
Twenty Parkinson's disease (PD) patients, 6 patients with essential tremor and 10 healthy controls were studied with the dopamine transporter ligand [(11)C]d-threo-methylphenidate ([(11)C]dMP) and positron emission tomography (PET) to assess dopamine terminal loss in relation to disease duration and motor disability. Dopamine transporter availability was(More)
The origin of changes in the neuronal activity of the globus pallidus (GP) and the subthalamic nucleus (STN) in animal models of Parkinson's disease (PD) is still controversial. The aim of the study was to investigate the neuronal activity of STN and GP neurons under urethane anesthesia in an early and in an advanced stage PD rat model. 6-Hydroxydopamine(More)
Gait and balance disturbances typically emerge in advanced Parkinson's disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we(More)
BACKGROUND For the treatment of medically refractory movement disorders such as Parkinson's disease, essential tremor and primary dystonia, deep brain stimulation (DBS) has become one of the main treatment options. The targets for implantation of the stimulation electrodes are various nuclei within the basal ganglia or the thalamic and subthalamic area.(More)
OBJECTIVE The optimal imaging modality for preoperative targeting of the subthalamic nucleus (STN) for high-frequency stimulation is controversially discussed. Commonly used methods were stereotactic magnetic resonance imaging (MRI), stereotactic ventriculography, and fusion between MRI and stereotactic computer tomography. All of these techniques not only(More)
Present pathophysiological concepts of neuropathic tremor assume mistimed and defective afferent input resulting in deregulation of cerebello-thalamo-cortical motor networks. Here, we provide direct evidence of central tremor processing in a 76-year-old female who underwent bilateral deep brain stimulation of the ventral intermedial nucleus of the thalamus(More)
Postural and action tremor in peripheral neuropathy is characteristic of Roussy-Levy syndrome. A patient with a severe demyelinating neuropathy and disabling neuropathic tremor successfully treated by deep brain stimulation (DBS) is reported. Disease onset was at age 63 years with sensory symptoms and slight action tremor. Within the following 9 years a(More)