Sorin Bastea

Learn More
We carried out three-dimensional simulations, with about 1.4 × 10 particles, of phase segregation in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving Boltzmann-Vlasov equations. Using a combination of Direct Simulation Monte Carlo(DSMC) for the short range collisions and a version of Particle-In-Cell(PIC)(More)
We study the evolution of a two component fluid consisting of ``blue'' and ``red'' particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scalings and system parameters we(More)
Water is known to exhibit fascinating physical properties at high pressure and temperature. Its remarkable structural and phase complexities suggest the possibility of exotic chemical reactivity under extreme conditions, although this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of(More)
We present in situ observations of hydrocarbon formation via carbonate reduction at upper mantle pressures and temperatures. Methane was formed from FeO, CaCO(3)-calcite, and water at pressures between 5 and 11 GPa and temperatures ranging from 500 degrees C to 1,500 degrees C. The results are shown to be consistent with multiphase thermodynamic(More)
Despite decades of research, the chemical processes and states of matter that govern the behavior of energetic materials under detonation conditions are not well understood, including the molecular-level processes that determine decomposition kinetics and energy release. Oxygen content is often employed as a simple and intuitive guide to the development and(More)
We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, which is based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics(More)
We have used x-ray diffraction to determine the structure factor of water along its melting line to a static pressure of 57 GPa (570 kbar) and a temperature of more than 1500 K, conditions which correspond to the lower mantle of the Earth, and the interiors of Neptune and Uranus up to a depth of 7000 km. We have also performed corresponding first principles(More)