Sorin Bastea

Learn More
We carried out three-dimensional simulations, with about 1.4 × 10 6 particles , of phase segregation in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving Boltzmann-Vlasov equations. Using a combination of Direct Simulation Monte Carlo(DSMC) for the short range collisions and a version of Particle-In-Cell(PIC)(More)
We study the evolution of a two component fluid consisting of " blue " and " red " particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scal-ings and system parameters we(More)
We consider the phase separation of binary fluids in contact with a surface, which is preferentially wetted by one of the components of the mixture. We review the results available for this problem and present numerical results obtained using a mesoscopic level simulation technique for the three-dimensional problem.
Starting with the Vlasov-Boltzmann equation for a binary fluid mixture, we derive an equation for the velocity field u when the system is segregated into two phases (at low temperatures) with a sharp interface between them. u satisfies the incompressible Navier-Stokes equations together with a jump boundary condition for the pressure across the interface(More)
We derive hydrodynamic equations describing the evolution of a binary fluid segregated into two regions, each rich in one species, which are separated (on the macro-scopic scale) by a sharp interface. Our starting point is a Vlasov-Boltzmann (VB) equation describing the evolution of the one particle position and velocity distributions, f i (x, v, t), i = 1,(More)
Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a(More)
We present molecular dynamics simulation results for the viscosity and mutual diffusion constant of a strongly asymmetric binary ionic mixture. We compare the results with available theoretical models previously tested for much smaller asymmetries. For the case of viscosity we propose a predictive framework based on the linear mixing rule, while for mutual(More)