Sorayya Malek

Learn More
Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera(More)
This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake(More)
Cephalometric analysis and measurements of skull parameters using X-Ray images plays an important role in predicating and monitoring orthodontic treatment. Manual analysis and measurements of cephalometric is considered tedious, time consuming, and subjected to human errors. Several cephalometric systems have been developed to automate the cephalometric(More)
Augmented reality has been a topic of intense research for several years for many applications. It consists of inserting a virtual object into a real scene. The virtual object must be accurately positioned in a desired place. Some measurements (calibration) are thus required and a set of correspondences between points on the calibration target and the(More)
Phytoplankton becomes a concern to the environment when it forms dense growth at the water surface, known as algal bloom. However, studies on mechanism of algal bloom are not straight forward mainly caused by uncertainty and complexity of alga ecosystems. This paper describes the analysis of limnological time-series of Putrajaya Lake and wetlands to(More)
This paper describes the application of two novel computational methods such as fuzzy logic and supervised artificial neural network (ANN) to model algal biomass in tropical Putrajaya Lake and Wetlands (Malaysia). Limnological time series data collected from 2001 until 2004 was utilized using input parameters such as water temperature, pH, secchi depth,(More)
Phytoplankton becomes a concern to the society when it forms a dense growth at water surface known as algae bloom. This paper discusses feasibility of applying recurrent artificial neural network to predict occurrence of selected phytoplankton population the Bacillariophyta population in Putrajaya Lake and Wetlands for one month ahead prediction. The data(More)
In this paper we describe the feasibility of applying Kohonen self organizing feature maps (SOM) and rule based system to determine the growth of selected algal division, Pyrrophyta using limnological time-series data of tropical Putrajaya Lake and Wetlands (Malaysia). A rule based model was developed based on the rules extracted from the SOM to model and(More)
  • 1