Sorada Kanokpanont

Learn More
Silk sericin (SS) can accelerate cell proliferation and attachment; however, SS can be extracted by various methods, which result in SS exhibiting different physical and biological properties. We found that SS produced from various extraction methods has different molecular weights, zeta potential, particle size and amino acid content. The MTT assay(More)
The present study investigated the chemical properties and antityrosinase activities of SS (silk sericin) extracted from different Thai silk strains via various extraction methods. Different silk strains contain distinct SS with various amino acid compositions, which are significantly influenced by the extraction method used. Urea extraction of SS was the(More)
Silk proteins have been shown to be good candidates for biomedical materials. However, there have been some reports regarding immunological and allergic responses to silk sericin. Our objective was to investigate the inflammatory mediators induced by sericin both in vitro and in vivo. Mouse monocyte and alveolar macrophage cell lines were used for(More)
A porous-three-dimensional scaffold shows several advantages in terms of tissue engineering since it can provide a framework for cells to attach, proliferate and form an extracellular matrix. Sericin, a by-product from the silk industry, can form a three-dimensional scaffold with PVA after freeze-drying but has a fragile structure. Glycerin (as a(More)
Gelatin and collagen were used to produce the scaffold for fibroblast cell culture. The properties of scaffolds obtained from type A and type B gelatin were compared to scaffold obtained from collagen, which is widely used in skin substitute. Porous scaffolds were prepared by freeze drying and dehydrothermal (DHT) crosslinking method. DHT treatment time was(More)
In this work, a new method for producing acellular dermis (ADM), a natural scaffold used for dermal replacement, from porcine skin was developed. Fresh porcine skin from local slaughterhouse was dehaired by sodium sulphide following by epidermis removal using glycerol. After fat removal by chloroform/methanol (2/1 v/v) solvent, cellular components were(More)
Biopolymer blends between collagen and chitosan have the potential to produce cell scaffolds with biocompatible properties. However, the relationship between the molecular weight of chitosan and its effect on physical and biological properties of collagen/chitosan scaffolds has not been elucidated yet. Porous scaffolds were fabricated by freeze-drying the(More)
This work has investigated the factors influencing the production of electrospun gelatin fibers including electrical potential and concentration of gelatin solution. Electrospun gelatin fibers were prepared from both type A and B gelatin solutions at the concentration of 2.5-60% w/v and 10-25 kV. Concentration of gelatin solution at 20-40% w/v was found to(More)
Biopolymer blends between collagen and chitosan have the potential to produce cell scaffolds with biocompatible properties. In this study, porous scaffolds were fabricated by freeze drying the solution of collagen and chitosan and crosslinked by dehydrothermal treatment (DHT). Various types of scaffolds were prepared by varying compositions of collagen and(More)
Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating(More)