Learn More
Preclinical development of human cells for potential therapeutic application in neurodegenerative diseases requires that their long-term survival, stability and functional efficacy be studied in animal models of human disease. Here we describe a strategy for long-term immune protection of human fetal and stem cell-derived neural cells transplanted into the(More)
The central nervous system is composed of the brain and the spinal cord. The brain is a complex organ that processes and coordinates activities of the body in bilaterian, higher-order animals. The development of the brain mirrors its complex function as it requires intricate genetic signalling at specific times, and deviations from this can lead to brain(More)
Reconstruction of CNS circuitry is a major aim of neural transplantation, and is currently being assessed clinically using foetal striatal tissue in Huntington's disease. Recent work suggests that neuronal precursors derived from foetal striatum may have a greater capacity than primary foetal striatum to project to the usual striatal target areas such as(More)
Human donor cells, including neurally directed embryonic stem cells and induced pluripotent stem cells with the potential to be used for neural transplantation in a range of neurodegenerative disorders, must first be tested preclinically in rodent models of disease to demonstrate safety and efficacy. One strategy for circumventing the rejection of(More)
We previously reported that early passage human foetal neural progenitors (hFNPs) survive long-term in the rodent host brain whereas late passage cells disappear at later post-graft survival times. The extent to which this finding is related to changes in the expanded FNPs or in the adult host brain environment was not determined. Here we report the effect(More)
"Proof-of-principle" that cell replacement therapy works for neurodegeneration has been reported, but only using donor cells collected from fetal brain tissue obtained from surgical terminations of pregnancy. Surgical terminations of pregnancy represent an increasingly limited supply of donor cells due to the tendency towards performing medical termination(More)
Neural transplantation as a therapeutic strategy in neurodegenerative disorders offers to replace cells lost during the disease process, with the potential to reconstruct dysfunctional circuitry, thus alleviating associated disease symptoms. The focal loss of striatal cells, specifically medium-sized spiny neurons (MSN) in Huntington's disease (HD), makes(More)
The efficient generation of striatal neurons from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) is fundamental for realising their promise in disease modelling, pharmaceutical drug screening and cell therapy for Huntington's disease. GABAergic medium-sized spiny neurons (MSNs) are the principal projection neurons of the(More)
The endocannabinoid system (ECS) and the dopaminergic system (DAS) are two major regulators of basal ganglia function. During Huntington's disease (HD) pathogenesis, the expression of genes in both the ECS and DAS is dysregulated. The purpose of this study was to determine the changes that were consistently observed in the ECS and DAS during HD progression(More)
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof(More)