Sophie Sacquin-Mora

Learn More
The Joint Evolutionary Trees (JET) method detects protein interfaces, the core residues involved in the folding process, and residues susceptible to site-directed mutagenesis and relevant to molecular recognition. The approach, based on the Evolutionary Trace (ET) method, introduces a novel way to treat evolutionary information. Families of homologous(More)
Experimental and theoretical studies have stressed the importance of flexibility for protein function. However, more local studies of protein dynamics, using temperature factors from crystallographic data or elastic models of protein mechanics, suggest that active sites are among the most rigid parts of proteins. We have used quasielastic neutron scattering(More)
Neuroglobin (Ngb), a recently discovered member of the globin family, is overexpressed in the brain tissues over oxygen deprivation. Unlike more classical globins, such as myoglobin and hemoglobin, it is characterized by a hexacoordinated heme, and its physiological role is still unknown, despite the numerous investigations made on the protein in recent(More)
It is now widely accepted that protein function depends not only on structure, but also on flexibility. However, the way mechanical properties contribute to catalytic mechanisms remains unclear. Here, we propose a method for investigating local flexibility within protein structures that combines a reduced protein representation with Brownian dynamics(More)
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian(More)
We have applied the calculation of mechanical properties to a dataset of almost 100 enzymes to determine the extent to which catalytic residues have distinct properties. Specifically, we have calculated force constants describing the ease of moving any given amino acid residue with respect to the other residues in the protein. The results show that(More)
Rigid-body docking has become quite successful in predicting the correct conformations of binary protein complexes, at least when the constituent proteins do not undergo large conformational changes upon binding. However, determining whether two given proteins interact is a more difficult problem. Successful docking procedures often give equally good scores(More)
Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one(More)
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic(More)
The coupling between electron transfer and protein dynamics has been investigated in reaction centers (RCs) from the wild type (wt) and the carotenoid-less strain R26 of the photosynthetic bacterium Rhodobacter sphaeroides. Recombination kinetics between the primary photoreduced quinone acceptor (QA-) and photoxidized donor (P+) have been analyzed at room(More)