Learn More
PURPOSE We evaluated the biomechanical strength of two all suture anchors (ASA) of reduced diameter (1.4 mm) and compared them with the standard screw anchor (SA) with larger diameter (5.5 mm) used in rotator cuff tears. METHODS We conducted 30 uniaxial vertical pullout tests using Material Testing System Instron 5566A until failure of the anchorage(More)
Metal implants, in e.g. joint replacements, are generally considered to be a success. As mechanical stability is important for the longevity of a prosthesis, the biological reaction of the bone to the mechanical loading conditions after implantation and during remodelling determines its fate. The bone reaction at the implant interface can be studied using(More)
Most acetabular cups implanted today are press-fit impacted cementless. Anchorage begins with the primary stability given by insertion of a slightly oversized cup. This primary stability is key to obtaining bone ingrowth and secondary stability. We tested the hypothesis that primary stability of the cup is related to surface roughness of the implant, using(More)
The porcine model is frequently used during development and validation of new spinal devices, because of its likeness to the human spine. These spinal devices are frequently composed of pedicle screws with a reputation for stable fixation but which can suffer pullouts during preclinical implantation on young animals, leading to high morbidity. With a view(More)
New fusionless devices are being developed to get over the limits of actual spinal surgical treatment, based on arthrodesis. However, due to their recentness, no standards exist to test and validate those devices, especially concerning the wear. A new tribological first approach to the definition of an in vitro wear protocol to study wear of flexible and(More)
  • 1