Learn More
RATIONALE Intensive care unit (ICU)-acquired weakness is a frequent complication of critical illness. It is unclear whether it is a marker or mediator of poor outcomes. OBJECTIVES To determine acute outcomes, 1-year mortality, and costs of ICU-acquired weakness among long-stay (≥8 d) ICU patients and to assess the impact of recovery of weakness at ICU(More)
BACKGROUND Critically ill infants and children often develop hyperglycaemia, which is associated with adverse outcome; however, whether lowering blood glucose concentrations to age-adjusted normal fasting values improves outcome is unknown. We investigated the effect of targeting age-adjusted normoglycaemia with insulin infusion in critically ill infants(More)
BACKGROUND Controversy exists about the timing of the initiation of parenteral nutrition in critically ill adults in whom caloric targets cannot be met by enteral nutrition alone. METHODS In this randomized, multicenter trial, we compared early initiation of parenteral nutrition (European guidelines) with late initiation (American and Canadian guidelines)(More)
BACKGROUND Patients who are critically ill can develop so-called intensive-care unit acquired weakness, which delays rehabilitation. Reduced muscle mass, quality, or both might have a role. The Early Parenteral Nutrition Completing Enteral Nutrition in Adult Critically Ill Patients (EPaNIC) trial (registered with ClinicalTrials.gov, number NCT00512122)(More)
Vitamin D is a secosteroid of nutritional origin but can also be generated in the skin by ultraviolet light. After two hydroxylations 1,25-(OH)2 vitamin D avidly binds and activates the vitamin D receptor (VDR), a nuclear transcription factor, hereby regulating a large number of genes. The generation of VDR deficient mice has expanded the knowledge on(More)
Critically ill patients are at increased risk of fractures during rehabilitation, and can experience impaired healing of traumatic and surgical bone fractures. In addition, markers of bone resorption are markedly increased in critically ill patients, while markers of bone formation are decreased. In the current study, we have directly investigated the(More)
BACKGROUND Survivors of critical illness are at increased risk of fractures. This may be due to increased osteoclast formation during critical illness, leading to trabecular bone loss. Such bone loss has also been observed in Paget's disease, and has been related to deficient autophagy. Deficient autophagy has also been documented in vital organs and(More)
Fetal mineralization appears to be driven by the pregnancy-induced stimulation of intestinal Ca absorption. We thus hypothesized that mineralization would be impaired in fetuses of mice that lack the vitamin D receptor (VDR). Here we report on the maternal response to pregnancy, and the fetal mineralization, in mice with a homozygous disruption of the VDR(More)
To ensure a multitude of essential cellular functions, the extracellular concentration of calcium is maintained within a narrow physiological range. This depends on integrated regulation of calcium fluxes with respect to the intestine, kidneys and bone. The precise regulation of serum calcium is controlled by calcium itself, through a calcium receptor and(More)
Stress hyperglycaemia is a distinctive clinical feature of critical illness. Stress mediators, namely stress hormones, cytokines and the central nervous system, interfere with normal carbohydrate metabolism, especially in the liver and skeletal muscle. Central insulin resistance, defined as increased hepatic gluconeogenesis and glucose output despite(More)