Sophie Gaudriault

Learn More
Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic(More)
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen(More)
The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs(More)
In Erwinia amylovora, the dsp region, required for pathogenicity on the host plant but not for hypersensitive elicitation on tobacco, is separated from the hrp region by 4 kb. The genetic analysis reported in this paper showed that this 4kb region is not required for pathogenicity on pear seedlings. The environmental conditions allowing expression of a(More)
The bacterium Photorhabdus establishes a highly specific association with Heterorhabditis, its nematode host. Photorhabdus strains associated with Heterorhabditis bacteriophora or Heterorhabditis megidis were compared using a Photorhabdus DNA microarray. We describe 31 regions belonging to the Photorhabdus flexible gene pool. Distribution analysis of(More)
Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from(More)
Summary Erwinia amylovora is a Gram-negative bacterium responsible for fire blight, a necrotic disease affecting plants of the Rosaceae family. E. amylovora virulence is dependent on a functional type III secretion system. To date, four proteins have been shown to travel through this secretion system: HrpN, HrpW, HrpA, and DspA/E. Next to dspA/E, dspB/F(More)
The free-living soil nematode Caenorhabditis elegans interacts with diverse microorganisms in its natural habitat. These microorganisms may serve as a food source or represent a harmful threat. As such, they constitute one of the most important ecological factors of the worm's natural environment. In this study, we examined the interaction between two(More)
Erwinia amylovora is a Gram-negative pathogenic bacterium that infects pear and apple trees as well as other plants from the Rosaceae family. E. amylovora pathogenicity is dependent on a functional Hrp type III secretion system. Harpin, a protein playing a major role in virulence, has been shown to be exported in vitro via the type III secretion apparatus.(More)
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We(More)