Learn More
The extent of skeletal muscle hypertrophy in response to resistance training is highly variable in humans. The main objective of this study was to explain the nature of this variability. More specifically, we focused on the myogenic stem cell population, the satellite cell (SC) as a potential mediator of hypertrophy. Twenty-three males (aged 18-35 yrs)(More)
The purpose of this study was to explore the possible role of muscle stem cells, also referred to as satellite cells (SCs), in adaptation and remodeling following a nonhypertrophic stimulus in humans. Muscle biopsies were obtained from the vastus lateralis of previously untrained women (n=15; age: 27±8 yr, BMI: 29±6 kg/m(2)) before and after 6 wk of aerobic(More)
Although Canadian Breast Screening Guidelines have been in place since 1988, participation rates have been suboptimal. The study objective was to describe changes in breast screening knowledge, attitudes, and practices among women aged 50 to 69 years since initiation of a regional mass screening program in Ottawa-Carleton in 1991. A random-digit-dialing(More)
The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week(More)
Insulin-like growth factor-1 (IGF-1) regulates stem cell proliferation and differentiation in vitro. The aim of this study was to quantify the change in satellite cell (SC) specific IGF-1 colocalization following exercise. We observed a significant increase (p < 0.05) in the percentage of SC with IGF-1 colocalization from baseline to 72 h after a bout of(More)
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under(More)
AIM A dysregulation of satellite cells may contribute to the progressive loss of muscle mass that occurs with age; however, older adults retain the ability to activate and expand their satellite cell pool in response to exercise. The modality of exercise capable of inducing the greatest acute response is unknown. We sought to characterize the acute(More)
The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study,(More)
Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty-two-month-old male C57Bl/6J mice(More)
BACKGROUND Skeletal muscle satellite cells (SC) are instrumental in maintenance of muscle fibres, the adaptive responses to exercise, and there is an age-related decline in SC. A spatial relationship exists between SC and muscle fibre capillaries. In the present study, we aimed to investigate whether chronologic age has an impact on the spatial relationship(More)