Learn More
In vivo and in vitro studies provide strong evidence of the osteogenic activity of nacre obtained from Pinctada maxima. The in vitro studies indicate that diffusible factors from nacre are involved in cell stimulation. The water-soluble matrix (WSM) was extracted from nacre by a non-decalcifying process, and four fractions (SE(1)-SE(4)) were separated by(More)
The nacre (mother of pearl) layer of the oyster Pinctada maxima shell can initiate bone formation by human osteoblasts in vivo and in vitro and is a new biomaterial that induces osteogenesis. This activity of nacre could be due to its water-soluble matrix. We examined the action of a water-soluble extract of nacre on the osteoblast phenotype of cells(More)
Organic matrix from molluscan shells has the potential to regulate calcium carbonate deposition and crystallization. Control of crystal growth thus seems to depend on control of matrix protein secretion or activation processes in the mantle cells, about which little is known. Biomineralization is a highly orchestrated biological process. The aim of this(More)
The defective areas in the premolar-molar region of maxillary alveolar bone of eight patients were reconstructed using powdered nacre from the giant oyster Pinctada maxima. Histological, microradiographic and polarized light studies of drill biopsies taken 6 months postoperatively showed that nacre was tightly bound to newly-formed bone. The nacre was(More)
There is frequently a loss of vertebral bone due to disease or aging. Nacre (mother of pearl from the oyster Pinctada maxima) stimulates bone cell differentiation and bone formation in vitro and in vivo. Experimental bone defects were prepared in the vertebrae of sheep and used to test the suitability of nacre as an injectable osteogenic biomaterial for(More)
Raw nacre implants persist even after 9 months of implantation into bone tissue in sheep. However the nacre surface undergoes a limited biodegradation process. Smooth-surfaced nacre implants were seen to become microporous after implantation. The results of these long-term, in vivo studies show that the overall process involves bone-resorbing cells, relies(More)
This study compares the osteogenic effects of nacre and autogenous bone grafts in a rabbit model of lumbar spine transverse process arthrodesis. A total of 15 rabbits were processed for arthrodesis between the fifth and sixth lumbar vertebrae using nacre powder mixed with autologous blood or autogenous iliac crest bone. Control rabbits were sham operated.(More)
Nacre implanted in vivo in bone is osteogenic suggesting that it may possess factor(s) which stimulate bone formation. The present study was undertaken to test the hypothesis that nacre can induce mineralization by human osteoblasts in vitro. Nacre chips were placed on a layer of first passage human osteoblasts. None of the chemical inducers generally(More)
This study evaluates the effect of the mother-of-pearl (nacre) organic matrix on mammalian osteoclast activity and on cathepsin K protease. Rabbit osteoclasts were cultured on bovine cortical bone slices in the presence of water-soluble molecules extracted from nacre of the pearl oyster Pinctada margaritifera. Osteoclast resorption activity was determined(More)
We have investigated the interface between bone and chronic implants of nacre in sheep. There was no foreign body reaction over the period of 10 months and the implants were not broken down. Light microscopy indicated activity within an osteoprogenitor cellular layer lining the implant, resulting in a complete sequence of new bone formation. Nacre appeared(More)