Learn More
Raw nacre implants persist even after 9 months of implantation into bone tissue in sheep. However the nacre surface undergoes a limited biodegradation process. Smooth-surfaced nacre implants were seen to become microporous after implantation. The results of these long-term, in vivo studies show that the overall process involves bone-resorbing cells, relies(More)
Nacre implanted in vivo in bone is osteogenic suggesting that it may possess factor(s) which stimulate bone formation. The present study was undertaken to test the hypothesis that nacre can induce mineralization by human osteoblasts in vitro. Nacre chips were placed on a layer of first passage human osteoblasts. None of the chemical inducers generally(More)
The nacre (mother of pearl) layer of the oyster Pinctada maxima shell can initiate bone formation by human osteoblasts in vivo and in vitro and is a new biomaterial that induces osteogenesis. This activity of nacre could be due to its water-soluble matrix. We examined the action of a water-soluble extract of nacre on the osteoblast phenotype of cells(More)
In vivo and in vitro studies provide strong evidence of the osteogenic activity of nacre obtained from Pinctada maxima. The in vitro studies indicate that diffusible factors from nacre are involved in cell stimulation. The water-soluble matrix (WSM) was extracted from nacre by a non-decalcifying process, and four fractions (SE(1)-SE(4)) were separated by(More)
This study evaluates the effect of the mother-of-pearl (nacre) organic matrix on mammalian osteoclast activity and on cathepsin K protease. Rabbit osteoclasts were cultured on bovine cortical bone slices in the presence of water-soluble molecules extracted from nacre of the pearl oyster Pinctada margaritifera. Osteoclast resorption activity was determined(More)
We have investigated the interface between bone and chronic implants of nacre in sheep. There was no foreign body reaction over the period of 10 months and the implants were not broken down. Light microscopy indicated activity within an osteoprogenitor cellular layer lining the implant, resulting in a complete sequence of new bone formation. Nacre appeared(More)
The components of the cutaneous envelope, the epidermis and the dermis, change in response to aging or environmental stress factors. The fibroblasts involved in maintaining skin tone are the main targets. Nacre, mother of pearl, from Pinctada maxima, which can stimulate and regulate bone forming cells, was implanted in the dermis of rats to test its action(More)
The defective areas in the premolar-molar region of maxillary alveolar bone of eight patients were reconstructed using powdered nacre from the giant oyster Pinctada maxima. Histological, microradiographic and polarized light studies of drill biopsies taken 6 months postoperatively showed that nacre was tightly bound to newly-formed bone. The nacre was(More)
Shell matrix proteins from Pinctada margaritifera were characterized by combining proteomics analysis of shell organic extracts and transcript sequences, both obtained from the shell-forming cell by using the suppression subtractive hybridization method (SSH) and from an expressed sequence tag (EST) database available from Pinctada maxima mantle tissue.(More)
Nacre of Pinctada margaritifera displays a number of interesting biological activities on bone, mainly concentrated in a water-soluble organic matrix representing 0.24% of the nacre weight. Dialysis of that matrix through 8 kDa and 1 kDa cut-off membranes showed that 60% of it is made of small molecules of molecular masses below 1 kDa. Reversed-phase(More)