Learn More
Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches--fluorescence two-dimensional difference gel electrophoresis (2-D DIGE) and multiplexed isobaric(More)
SnRK2.8 is a member of the sucrose nonfermenting-related kinase family that is down-regulated when plants are deprived of nutrients and growth is reduced. When this kinase is over expressed in Arabidopsis, the plants grow larger. To understand how this kinase modulates growth, we identified some of the proteins that are phosphorylated by this kinase. A new(More)
The xylem in plants has mainly been described as a conduit for water and minerals, but emerging evidence also indicates that the xylem contains protein. To study the proteins in xylem sap, we characterized the identity and composition of the maize xylem sap proteome. The composition of the xylem sap proteome in maize revealed proteins related to different(More)
Cell wall proteins (CWPs) play important roles in various processes, including cell elongation. However, relatively little is known about the composition of CWPs in growing regions. We are using a proteomics approach to gain a comprehensive understanding of the identity of CWPs in the maize (Zea mays) primary root elongation zone. As the first step, we(More)
Plants produce compounds in roots that are transported to shoots via the xylem sap. Some of these compounds are vital for signalling and adaptation to environmental stress such as drought. In this study, we screened the xylem sap using mass spectrometry to quantify the changes in new and previously identified sap constituents under extended drought. We(More)
Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties. To gain a comprehensive understanding of how cell wall protein (CWP) composition changes in association with the(More)
Recent reports suggest that early sensing of soil water stress by plant roots and the concomitant reduction in stomatal conductance may not be mediated by root-sourced abscisic acid (ABA), but that other xylem-borne chemicals may be the primary stress signal(s). To gain more insight into the role of root-sourced ABA, the timing and location of the(More)
Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular(More)
Endurance exercise is known to provide cardioprotection against ischemia-reperfusion-induced myocardial injury, and mitochondrial adaptations may play a critical role in this protection. To investigate exercise-induced changes in mitochondrial proteins, we compared the proteome of subsarcolemmal and intermyofibrillar mitochondria isolated from the(More)
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in(More)