Learn More
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all(More)
We introduce a new semantic annotation scheme for the Recognizing Textual Entailment (RTE) dataset as well as a manually annotated dataset that uses this scheme. The scheme addresses three types of modification that license entailment patterns: restrictive, appositive and conjunctive, with a formal semantic specification of these patterns' contribution for(More)
MOTIVATION Protein-protein interactions (PPIs) play an important role in understanding biological processes. Although recent research in text mining has achieved a significant progress in automatic PPI extraction from literature, performance of existing systems still needs to be improved. RESULTS In this study, we propose a novel algorithm for extracting(More)
BACKGROUND Hypothesis generation in molecular and cellular biology is an empirical process in which knowledge derived from prior experiments is distilled into a comprehensible model. The requirement of automated support is exemplified by the difficulty of considering all relevant facts that are contained in the millions of documents available from PubMed.(More)
This paper discusses the problem of marrying structural similarity with semantic relat-edness for Information Extraction from text. Aiming at accurate recognition of relations, we introduce local alignment kernels and explore various possibilities of using them for this task. We give a definition of a local alignment (LA) kernel based on the Smith-Waterman(More)