Sophia Bongard

Learn More
Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging. The community has already developed many(More)
Systems biology has to increasingly cope with large- and multi-scale biological systems. Many successful in silico representations and simulations of various cellular modules proved mathematical modelling to be an important tool in gaining a solid understanding of biological phenomena. However, models spanning different functional layers (e.g. metabolism,(More)
Mathematical models that predict the complex dynamic behaviour of cellular networks are fundamental in systems biology, and provide an important basis for biomedical and biotechnological applications. However, obtaining reliable predictions from large-scale dynamic models is commonly a challenging task due to lack of identifiability. The present work(More)
Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging. The community has already developed many(More)
  • 1