Learn More
BACKGROUND AND PURPOSE Sensitivity, positive predictive value (PPV), and negative predictive value (NPV) of conventional MR imaging in predicting glioma grade are not high. Relative cerebral blood volume (rCBV) measurements derived from perfusion MR imaging and metabolite ratios from proton MR spectroscopy are useful in predicting glioma grade. We evaluated(More)
Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the(More)
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) is an advanced MR technique that describes the movement of water molecules by using two metrics, mean diffusivity (MD), and fractional anisotropy (FA), which represent the magnitude and directionality of water diffusion, respectively. We hypothesize that alterations in these values within the tissue(More)
Neural stem cells with astrocyte-like characteristics exist in the human brain subventricular zone (SVZ), and these cells may give rise to glioblastoma multiforme (GBM). We therefore analyzed MRI features of GBMs in specific relation to the SVZ. We reviewed the preoperative and serial postoperative MR images of 53 patients with newly diagnosed GBM. The(More)
OBJECT Convection-enhanced delivery (CED) is a novel method for delivering therapeutic agents to infiltrative brain tumor cells. For agents administered by CED, changes on magnetic resonance (MR) imaging directly resulting from catheter placement, infusion, and the therapeutic compound may confound any interpretation of tumor progression. As part of an(More)
OBJECT Diffusion-weighted magnetic resonance (MR) imaging is an invaluable tool in the diagnosis of acute stroke and other types of brain injury. Abnormalities in and around the resection cavity on diffusion-weighted imaging have been observed following surgery for infiltrating glioma. The purpose of this study was to investigate prospectively the(More)
BACKGROUND AND PURPOSE The measurement of relative cerebral blood volume (rCBV) and the volume transfer constant (K(trans)) by means of dynamic contrast-enhanced (DCE) perfusion MR imaging (pMRI) can be useful in characterizing brain tumors. The purpose of our study was to evaluate the utility of these measurements in differentiating typical meningiomas and(More)
BACKGROUND AND PURPOSE T1-weighted, 3D gradient-echo MR sequences can be optimized for rapid acquisition and improved resolution through asymmetric k-space sampling and interpolation. We compared a volumetric interpolated brain examination (VIBE) sequence with a magnetization-prepared rapid acquisition gradient echo (MP RAGE) sequence and a 2D T1-weighted(More)
T he role of neuroimaging in patients with brain tumors is no longer simply to evaluate structural abnormality and identify tumor-related complications. By transitioning from a purely anatomy-based discipline to one that incorporates functional, hemodynamic, metabolic, cellular, and cytoarchi-tectural alterations, the current state of neuroimaging has(More)
BACKGROUND AND PURPOSE The advent of new anti-angiogenic therapies has created the need for better defining regions of abnormal vascularity in order to add specificity to the classification of high-grade gliomas. This study investigated MR imaging parameters corresponding to the peak height and percent recovery of the T2* relaxivity curve to characterize(More)